Home Technology The LTSN solution of the transport equation for one-dimensional cartesian geometry with c = 1
Article
Licensed
Unlicensed Requires Authentication

The LTSN solution of the transport equation for one-dimensional cartesian geometry with c = 1

  • C. F. Segatto , M. T. Vilhena and D. V. Marona
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

In this work we present a LTSN formulation for the isotropic neutron transport problem in a slab assuming c = 1. The LTSN solution for c = 1 is modified by applying the Schur decomposition and Heaviside expansion techniques. Numerical results are reported.

Kurzfassung

Die LTSN Lösung der Transportgleichung für eindimensionale kartesische Geometrie mit c = 1. In der vorliegenden Arbeit wird eine LTSN Formulierung für das isotropische Neutronentransportproblem in einer Platte bei Annahme von c = 1 vorgestellt. Die LTSN Lösung für c = 1 wird modifiziert durch Anwendung der Schur-Zerlegung und der Heaviside Expansionsverfahren. Über die numerischen Ergebnisse wird berichtet.

References

1 Segatto, C. F.; Vilhena, M. T.; Tavares, L. S. S.: The determination of radiant parameters by the LTSN method. Journal of Quantitative Spectroscopy & Radiative Transfer70 (2001) 22710.1016/S0022-4073(00)00135-7Search in Google Scholar

2 Vilhena, M. T.; Barichello, L. B.: An analytical solution for the multigroup slab geometry discrete ordinates problem. Transport Theory and Statistical Physics24 (1995) 133710.1080/00411459508206027Search in Google Scholar

3 Batistella, C. H.; Vilhena, M. T.; Borges, V.: Criticality by the LTSN method. Journal of Nuclear Science and Technology34 (1997) 60310.1080/18811248.1997.9733714Search in Google Scholar

4 Batistella, C. H.; Vilhena, M. T.; Borges, V.: Determination of the effective multiplication factor in a slab by the LTSN method. Annals of Nuclear Energy26 (1999) 76110.1016/S0306-4549(98)00096-6Search in Google Scholar

5 Gonçalves, G. A.; Segatto, C. F.; Vilhena, M. T.: The LTSN particular solution in a slab for an arbitrary source and large quadrature. Journal of Quantitative Spectroscopy & Radiative Transfer66 (2000) 27110.1016/S0022-4073(99)00152-1Search in Google Scholar

6 Gonçalves, G. A.; Orengo, G.; Vilhena, M. T.; Graça, C. O.: The LTSN solution of the adjoint neutron transport equation with arbitrary source for high order of quadrature in a homogeneous Slab. Annals of Nuclear Energy29 (2002) 56110.1016/S0306-4549(01)00057-3Search in Google Scholar

7 Segatto, C. F.; Vilhena, M. T.; Brancher, J. D.: The one-dimensional LTSN formulation for high degree of anisotropy. Journal of Quantitative Spectroscopy & Radiative Transfer.61 (1999) 3910.1016/S0022-4073(97)00191-XSearch in Google Scholar

8 Brancher, J. D.; Vilhena, M. T.; Segatto, C. F.: The LTSN solution for radiative transfer problem without azimutal symmetry with severe anisotropy. Journal of Quantitative Spectroscopy & Radiative Transfer62 (1999) 43Search in Google Scholar

9 Segatto, C. F.; Vilhena, M. T.; Gomes, M. G.: The one-dimensional LTSN solution in a slab with high degree of quadrature. Annals of Nuclear Energy26 (1999) 92510.1016/S0306-4549(98)00106-6Search in Google Scholar

10 Velho, H. F. C.; Vilhena, M. T.; Retamoso, M. R.; Pazos, R. P.: An application of the LTSN method on an inverse problem in hydrological optics. Progress in Nuclear Energy40 (2003) 45710.1016/S0149-1970(03)90015-1Search in Google Scholar

11 Vargas, R. M. F.; Vilhena, M. T.: A closed-form solution for one-dimensional radiative condutive problem by the decomposition and LTSN methods. Journal of Quantitative Spectroscopy & Radiative Transfer61 (1998) 30312Search in Google Scholar

12 Pazos, R. P.; Thompson, M.; Vilhena, M. T.: Error bounds for spectral collocation method for the linear Boltzmann equation. International Journal of Computational and Numerical Analysis and Applications1 (2001) 237Search in Google Scholar

13 Oliveira, J. V. P.; Cardona, A. V.; Vilhena, M. T.: Solution of the one-dimensional time-dependent discrete ordinates problem in a slab by the spectral and LTSN methods. Annals of Nuclear Energy29 (2002) 1310.1016/S0306-4549(01)00033-0Search in Google Scholar

14 Simch, M. R.; Segatto, C. F.; Vilhena, M. T.: An analytical solution for the SN radiative transfer equation with polarization in a slab by the LTSN method. Journal of Quantitative Spectroscopy & Radiative Transfer97 (2006) 42410.1016/j.jqsrt.2005.05.066Search in Google Scholar

15 Larsen, E. W.; Vasquez, R.; Vilhena, M. T.: Particle transport in the 1-D diffusive atomic mix limit. Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, 2005, Avignon, France.Search in Google Scholar

16 Case, K. M.; Zweifel, P. F.: Linear Transport Theory, Addison-Wesley (1967)Search in Google Scholar

Received: 2007-10-26
Published Online: 2013-04-05
Published in Print: 2008-03-01

© 2008, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100539/pdf
Scroll to top button