Home Technology Thermal-hydraulic modeling of the onset of flow instability in MTR reactors
Article
Licensed
Unlicensed Requires Authentication

Thermal-hydraulic modeling of the onset of flow instability in MTR reactors

  • H. A. Khater , S. El-Din El-Morshdy and M. A. Ibrahim
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

Prediction of the onset of the flow instability (OFI) in steady and transient sub-cooled flow boiling is an important consideration in the design and operation of nuclear reactors especially material test reactors (MTR). In this study, a predictive model of OFI in the MTR has been developed. The model is based on both heat balance of bubble generation and condensation and force balance for the detached bubbles at the onset of significant void (OSV). Only one coefficient involved in the proposed model is identified by experimental data that covers the wide range of MTR operating conditions. The model results are compared with results of some previous models where the present model gives the lower deviation from the experimental data. A correlation for the heat flux at OFI is also developed based on the present model. The developed correlation gives lower deviation from the experimental data than the well-known correlation of Whittle and Forgan. The model is also used to predict the OFI locus during transient where it shows good agreement with the short transient of Lee and Bankoff as well.

Kurzfassung

Die Vorhersage der Entstehung von Strömungsinstabilitäten (OFI) bei stabilen und transienten unterkühlten Siedeströmungen ist ein wichtiger Aspekt bei der Entwicklung und beim Betrieb von Kernreaktoren, insbesondere bei Materialtest-Reaktoren (MTR). In der vorliegenden Arbeit wird ein OFI-Vorhersagemodell entwickelt. Das Modell berücksichtigt sowohl die Wärmebilanz der Blasenbildung und der Kondensation wie auch die Energiebilanz einzelner Dampfblasen beim Entstehen eines signifikanten Void-Effekts (OSV). Nur ein in diesem Modell betrachteter Koeffizient, der den breiten Bereich der MTR-Betriebsphasen umfasst, wurde experimentell bestimmt. Die Modellergebnisse werden verglichen mit den Ergebnissen der Vorläufer-Modelle, wobei das jetzige Modell eine kleinere Abweichung von den experimentellen Werten aufweist. Auf der Basis dieses Modells wurde ebenfalls die Korrelation des Wärmestroms zur Entstehung von Strömungsinstabilitäten betrachtet. Diese ergab niedrigere Abweichungen von den experimentellen Daten als die bekannte Korrelation von Whittle und Forgan. Das Modell wird auch verwendet zur Vorhersage der OFI Lokalisierung transienter Vorgänge und zeigt eine gute Übereinstimmung mit den kurzzeitigen Transienten von Lee und Bankoff.

References

1Whittle, R. H.; Forgan, R.: A Correlation for the Minima in the Pressure Drop Versus Flow-Rate Curves for Sub-cooled Water Flowing in Narrow Heated Channels. Nuclear Engineering and Design6 (1967) 8999Search in Google Scholar

2Lee, S. C.; Bankoff, S. G.: Prediction of the Onset of Flow Instability in Transient Sub-cooled Flow Boiling: J. of Nuclear Eng. and Design139 (1993) 149159Search in Google Scholar

3Doughherty, T.; Fighetti, C.; McAssey, E.; Reddy, G.; Yang, B.; Chen, K.; Qureshi, Z.: Flow Instability in Vertical Channels. ASME HTD159 (1991) 177186Search in Google Scholar

4Unal, H. C.: Void Fraction and Incipient Point of Boiling During the Subcooled Nucleate Flow Boiling of Water. Int. J. Heat and Mass Transfer20 (1977) 40941910.1016/0017-9310(77)90162-4Search in Google Scholar

5Saha, P.; Ishii, M.; Zuber, N.: An Experimental Investigation of the Thermally Induced Flow Oscillations in Two-Phase Systems. J. Heat Transfer, Trans. ASME, 98 (1976) 61662210.1115/1.3450609Search in Google Scholar

6Saha, P.; Zuber, N.: An Analytical Study of the Thermally Induced Two-Phase Flow Instabilities Including the Effects of Thermally Non-Equilibrium. Int. J. Heat and Mass Transfer21 (1976) 415426Search in Google Scholar

7Rogers, J. T.; Salcudean, M.; Abdullah, Z.; McLead, D.; Poirier, D.: The Onset of Significant Void in Up-Flow Boiling of Water at Low Pressure and Velocities. Int. J. Heat and Mass Transfer30 (1987) 2247226010.1016/0017-9310(87)90218-3Search in Google Scholar

8Chatoorgooon, V.; Dimmick, G. R.; Carver, M. B.; Selander, W. N.; Shoukri, M.: Application of Generation and Condensation Models to Predict Subcooled Boiling Void at Low Pressures. Nuclear Technology98 (1992) 366378Search in Google Scholar

9Zeiton, O.; Shoukri, M.: Bubble Behavior and Mean Diameter in Sub-cooled Flow Boiling. J. Heat Transfer, Trans. ASME118 (1996) 11011610.1115/1.2824023Search in Google Scholar

10Zeiton, O.; Shoukri, M.: Axial Void Fraction Profile in Low Pressure Sub-cooled Flow Boiling. J. Heat Transfer, Trans. ASME40 (1997) 869879Search in Google Scholar

11Chang, H. O. H.; Chapman, J. C.: Two-Phase Flow Instability for Low–Flow Boiling in Vertical Uniformly Heated Thin Rectangular Channels. Nuclear Technology113 (1996) 327337Search in Google Scholar

12Levy, S.: Forced Convection Sub-Cooled Boiling Prediction of Vapor Volumetric Fraction. Int. J. Heat and Mass Transfer10 (1967) 95196510.1016/0017-9310(67)90071-3Search in Google Scholar

13Staub, F. W.: The Void Fraction in Sub-Cooled Boiling-Prediction of the Initial Point of Net Vapor Generation. J. Heat Transfer, Trans. ASME, 90 (1968) 15115710.1115/1.3597446Search in Google Scholar

14QiSun; Yang, R.; Zhao, H.: Predictive Study of the Incipient of Net Vapor Generation in Low Flow Sub-cooled Boiling. Nuclear Eng and Design225 (2003) 294256Search in Google Scholar

15Gehrke, V.; Bankoff, S. G.: Stability of Forced Convection Sub-cooled Boiling in Steady-State and Transient Annular Flow. NRTSC, WSRC-TR-93-406, June 199310.2172/10194741Search in Google Scholar

16Rouhani, S. Z.; Axelsson, E.: Calculation of Void Volume Fraction in the Sub-cooled and Quality Boiling Region. Int. J. Heat and Mass Transfer13 (1970) 38339310.1016/0017-9310(70)90114-6Search in Google Scholar

17Ishii, M.; Mishima, K.: Two-Fluid Model and Hydrodynamic Constitutive Relations. Nuclear Engineering and Design82 (1984) 10712610.1016/0029-5493(84)90207-3Search in Google Scholar

18AEA TECHNOLOGY PLC, CFX-4.3: Solver Manual, Harwell, United Kingdom, 1999Search in Google Scholar

19Avdeev, A. A.: Application of the Reynolds Analogy to the Investigation of Surface Boiling in Conditions of Forced Motion. High Temperature24 (1986) 100108Search in Google Scholar

Received: 2006-4-19
Published Online: 2013-03-26
Published in Print: 2006-11-01

© 2006, Carl Hanser Verlag, München

Downloaded on 12.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.100303/html
Scroll to top button