Home Technology Design stability and safety margins of the ETRR-2 core cooling system regarding seismic loads
Article
Licensed
Unlicensed Requires Authentication

Design stability and safety margins of the ETRR-2 core cooling system regarding seismic loads

  • K. Ahmed
Published/Copyright: May 6, 2013
Become an author with De Gruyter Brill

Abstract

The seismic design of a nuclear power plant includes two levels of design earthquake, the safe shutdown earthquake (SSE) and the operating basis earthquake (OBE). The OBE and SSE are considered in the nuclear power plant design as required by the IAEA safety regulations. A typical piping model for the ETRR-2 core cooling system includes ASME-class 1, 2 and 3 piping and was analyzed with regard to both IAEA safety regimes. A load combination, as stated by the IAEA Safety Guide 50-SG-S2, has been considered. The safety guide requires that the OBE should equal to at least one half SSE and that the plant should be shut down if exposed to earthquake intensity greater than the OBE. The results reflect the requirement for the precise design of a supporting system to accommodate for higher seismic peaks more than 0.2 g and the system needs to be more flexible.

Kurzfassung

Bei der seismischen Auslegung eines Kernkraftwerks werden zwei Erdbebenfälle betrachtet: das Sicherheitserdbeben (SSE) und das Betriebserdbeben (OBE). Die Einbeziehung von SSE und OBE ist bei der Auslegung von Kernkraftwerken nach den IAEA Sicherheitsvorschriften erforderlich. Ein typsiches Rohrleitungsmodell für das ETRR-2 Kühlsystem enthält Rohrleitungen nach ASME-Klassen 1, 2 und 3 und wurde im Hinblick auf die beiden IAEA Erdbebenfälle analysiert. Eine Kombination von Belastungen wurde gemäß IAEA Safety Guide 50-SG-S2 berücksichtigt. Der Saftey Guide schreibt vor, dass der OBE-Wert die Hältes des SSE-Wertes betragen sollte und dass die Anlage bei einer Erdbebenintensität größer als der OBE-Wert abgeschaltet werden soll. Die Ergebnisse bestätigen die Forderung nach einer entsprechenden Auslegung eines erdbebensicheren Systems, das Belastungen von mehr als 0,2 g aufnehmen kann und elastisch gestaltet sein sollte.

References

1 US Nuclear Regulatory Commission, Seismic and Geologic Siting Criteria for NPP, 10 CFR Part 100, Appendix A, Jan. 10, (1997).Search in Google Scholar

2 US Nuclear Regulatory Commission, Earthquake Engineering Criteria for Nuclear Power Plants, 10 CFR Part 50, Appendix S, (1997a).Search in Google Scholar

3 IAEA Safety Guide No. 50-SG-S2, Seismic Analysis & Testing of Nuclear Power Plants., Vienna (1979).Search in Google Scholar

4 ASME Boiler & Pressure Vessel Code, Section III, (1992) Edition, Nuclear Power Plant Components, Class 1, 2, 3.Search in Google Scholar

5 Algor Inc. Pipe Plus user Manual, ver. 6, Pittsburgh, PA (1994).Search in Google Scholar

6 Ahmed, K. and El-Messiry, A. M.: Hydraulic structure response due to ETRR-2 Core cooling system failure. 3rd Asia Pacific Conference on Shock & Impact Loads on Structures, Nov. 24–26, (1999), Singapore.Search in Google Scholar

7 Spyrakos, C.: Finite Element Modeling. West Virginia Univ. Press, (1994).Search in Google Scholar

8 Clough, R. N. and Penzien, J.: Dynamics of Structures. 2nd Edition, 1998.Search in Google Scholar

9 Hansen, R. J.: Seismic Design for Nuclear Power Plants. MIT Press, Cambridge, Mass. and London, 1970.Search in Google Scholar

10 Sato, H.et al.: Philosophy and Practice of the Seismic Design for Nuclear Power Plants. Nucl. Eng. Des.202 (1972) 339.Search in Google Scholar

11 US NRC: Combining Modal Response and Spatial Components in Seismic Response Analysis. USNRC, Regulatory Guide 1.92, Revision 1, Feb. (1976).Search in Google Scholar

Received: 2005-8-22
Published Online: 2013-05-06
Published in Print: 2005-11-01

© 2005, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100258/html
Scroll to top button