Home High-precision deformation and damage development assessment of composite materials by high-speed camera, high-frequency impulse and digital image correlation techniques
Article
Licensed
Unlicensed Requires Authentication

High-precision deformation and damage development assessment of composite materials by high-speed camera, high-frequency impulse and digital image correlation techniques

  • Sebastian Myslicki , Markus Ortlieb , Gerrit Frieling and Frank Walther
Published/Copyright: November 18, 2015
Become an author with De Gruyter Brill

Abstract

Although composite materials like wood, vulcanized fiber and carbon reinforced plastic (CFRP) are already investigated by means of their mechanical properties, the abrupt fracture mechanism as well as the deformation behavior right before and after fracture has not been investigated. However, it is marginally investigated for CFRP because of the quite high fracture speed. The knowledge about the damage evolution as the crack start and propagation can help to improve the strength and sensitivity to fracture by improving the materials structure and to utilize these materials for structural applications. For the investigated materials, fracture happens abruptly as it is the nature of composites and the detailed fracture mechanisms could not be detected by conventional measurement techniques. Therefore, an innovative combination of testing devices is presented which is able to fill this gap. Tensile tests were performed to receive conventional stress-strain curves. At the fracture stage, a high-speed camera recorded the fracture process. This information could be combined with digital image correlation (DIC) to visualize the deformation behavior. At the same time acoustic emission (AE) was used to detect the spectrum of mechanical vibrations which gives information about the released energy due to fracture. The challenging triggering of the high-speed camera was solved for each material individually. By using improved light sources, the recording speed could be set up to 2 million frames per second (Mfps). The investigations show different fracture mechanisms for each composite. Wood and vulcanized fiber were also investigated in different directions due to their anisotropy.

Kurzfassung

Verbundwerkstoffe wie Holz, Vulkanfiber und kohlenstofffaserverstärkter Kunststoff (CFK) sind hinsichtlich ihrer mechanischen Eigenschaften bereits charakterisiert, allerdings fehlen bisher detaillierte Informationen zu den Bruchmechanismen und zum Verformungsverhalten unmittelbar vor dem Bruch. Für CFK liegt dies u.a. in der sehr hohen Bruchgeschwindigkeit begründet. Kenntnisse über die Schädigungsentwicklung beim Rissbeginn und -fortschritt können jedoch dabei helfen, die Empfindlichkeit und den Widerstand gegenüber Brüchen durch eine optimierte Materialstruktur zu verbessern und diese Materialien für strukturelle Anwendungen weiter zu qualifizieren. Da für die untersuchte Werkstoffgruppe die Bruchmechanismen bisher mit konventioneller Messtechnik nicht hinreichend genau detektiert werden konnten, wird in dieser Arbeit die simultane Anwendung innovativer Messtechniken vorgestellt, um diese Lücke zu schließen. Das Bruchverhalten in Zugversuchen wurde mittels eines Hochgeschwindigkeitskamerasystems aufgenommen, dessen Informationen zur Visualisierung mittels digitaler Bildkorrelation (DIC) ausgewertet wurden. Gleichzeitig wurde durch Einsatz der Hochfrequenzimpulsmessung (HFIM) das Spektrum mechanischer Schwingungen ermittelt, das zuverlässige Informationen über freigesetzte Energien liefert. Die Herausforderung einer geeigneten Triggerung der Hochgeschwindigkeitskamera wurde materialspezifisch gelöst. Durch die Verwendung von Hochleistungs-Lichtquellen wurde eine Aufnahmegeschwindigkeit von 2 Millionen Bildern pro Sekunde erreicht. Die Untersuchungen liefern detaillierte Informationen über die unterschiedlichen Bruchmechanismen, wobei Holz und Vulkanfiber aufgrund ihrer Anisotropie in verschiedenen Orientierungen charakterisiert wurden.


§Correspondence Address, Sebastian Myslicki, Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany. E-mail:

Dipl.-Wirt.-Ing. Sebastian Myslicki, born in 1982, studied Industrial Engineering with specialization in Production Management at TU Dortmund University, Germany. After his diploma thesis, he has been working as a scientific assistant at Materials Test Engineering (WPT) in the Faculty of Mechanical Engineering of TU Dortmund University, Germany, headed by Prof. Walther. His research focus is on fatigue and fracture of composite materials.

Dr. Markus Ortlieb finished his PhD in the Department of Physical Chemistry, Ruhr University Bochum, Germany, in the field of laser spectroscopy and laser microscopy in 2008. He is currently working at Shimadzu Europe GmbH as a trainer and developer in the product marketing group and supports applications in the field of material testing and spectroscopy.

Dipl.-Phys. Gerrit Frieling studied Physics at RWTH Aachen University, Germany. He is working as a scientific assistant at Materials Test Engineering (WPT) in the Faculty of Mechanical Engineering of TU Dortmund University, Germany.

Prof. Dr.-Ing. Frank Walther, born in 1970, studied Mechanical Engineering majoring in Materials Science and Engineering at TU Kaiserslautern University, Germany, from 1992 to 1997. There he finished his PhD on the fatigue assessment of highly-loaded railway wheel steels at the Institute of Materials Science and Engineering (WKK) in 2002. From 2002 to 2008, he headed the research group Fatigue Behaviour at WKK and finished his postdoctoral qualification (habilitation) in Materials Science and Engineering in 2007. Afterwards, he joined Schaeffler AG in Herzogenaurach, Germany, and took responsibility for Public Private Partnership comprising public research funding and materials research projects within corporate development. Since 2010, he has been Professor for Materials Test Engineering (WPT) at TU Dortmund University, Germany. His research portfolio includes determination of structure-property relationships of metal- and polymer-based materials and components taking the influence of manufacturing and joining processes as well as service loading and corrosion deterioration into account. New measurement and destructive/nondestructive testing techniques are applied for the characterization of fatigue behavior from LCF to VHCF range under mechanical, thermal, chemical and mixed influences, as well as new physically-based approaches for the calculation of damage development and (remaining) fatigue life. Besides, he is engaged in various committees, e. g., as referee for the German Research Foundation (DFG), member of Board of German Materials Society (DGM), member of German Association for Materials Research and Testing (DVM), member of Board of Association of German Engineers (VDI) and member of Scientific Association of Materials Engineering (WAW). He has published more than 130 reviewed papers and conference proceedings so far and maintains close scientific contact with institutions and industries in materials science and engineering field worldwide.


References

1 D.Kohl, T.Flohr, S.Böhm: Adhesively bonded wood-based multi-material systems as a sustainable material for technical applications, Proc. of the 37th Annual Meeting of the Adhesion Society, San Diego, USA (2014), pp. 119121Search in Google Scholar

2 B.Penning, F.Walther, D.Dumke, B.Künne: Einfluss der Verformungsgeschwindigkeit und des Feuchtegehaltes auf das quasistatische Verformungsverhalten technischer Vulkanfiber, Materials Testing55 (2013), No. 4, pp. 27628410.3139/120.110435Search in Google Scholar

3 M.Kashfuddoja, M.Ramji: Whole-field strain analysis and damage assessment of adhesively bonded patch repair of CFRP laminates using 3D-DIC and FEA, Composites Part B53 (2013), pp. 466110.1016/j.compositesb.2013.04.030Search in Google Scholar

4 H.Kusano, Y.Aoki, Y.Hirano, T.Hasegawa, Y.Nagao: Visualization on static tensile test for unidirectional CFRP, 17th International Conference on Composite Materials ICCM-17 (2009), http://www.iccm-central.org/Proceedings/ICCM17proceedings/Themes/Behaviour/DEFORM%20%26%20FRACTURE%20OF%20COMP/INT%20-%20DFC/IF8.2%20Kusano.pdf (01.10.2015)Search in Google Scholar

5 Y.Kondo, K.Takubo, H.Tominags, R.Hirose, N.Tokuoka, Y.Kawaguchi, Y.Takaie, A.Ozaki, S.Nakaya, F.Yano, T.Daigen: Development of “HyperVision HPV-X” High-speed Video Camera, Shimadzu Review69 (2012), pp. 285291, http://www.shimadzu.com/an/journal/selection/SR13_002E.pdf (01.10.2015)Search in Google Scholar

6 H.Kusano, T.Mizuno, A.Yamada, Y.Aoki, Y.Hirano: High resolution measurement for fracture behavior observations of CFRP, 18th International Conference on Composite Materials (2011), http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug23%28Tuesday%29/T32%20Impact%20and%20Dynamic%20Response/T32-6-AF1475.pdf (01.10.2015)Search in Google Scholar

7 S. A.Krishnana, A.Baranwalb, A.Moitraa, G.Sasikalaa, S. K.Alberta, A. K.Bhaduria, G. A.Harmainb, T.Jayakumara, E. RajendraKumarc: Assessment of deformation field during high strain rate tensile tests of RAFM steel using DIC technique, Procedia Engineering86 (2014), pp. 13113810.1016/j.proeng.2014.11.021Search in Google Scholar

8 J.Qin, R.Chen, X.Wen, Y.Lin, M.Liang, F.Lu: Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading, Materials Science & Engineering A586 (2013), pp. 627010.1016/j.msea.2013.07.091Search in Google Scholar

9 T.Brynk, A.Laptiev, O.Tolochyn, Z.Pakiela: The method of fracture toughness measurement of brittle materials by means of high-speed camera and DIC, Computational Materials Science64 (2012), pp. 22122410.1016/j.commatsci.2012.05.025Search in Google Scholar

10 D.Hülsbusch, F.Walther: Damage detection and fatigue strength estimation of carbon fibre reinforced polymers (CFRP) using combined electrical and high-frequency impulse measurements, The e-Journal of Nondestructive Testing20 (2015), No. 1, pp. 19Search in Google Scholar

11 U.Karrenberg: Signale-Prozesse-Systeme – Eine multimediale und interaktive Einführung in die Signalverarbeitung, Springer Verlag, Heidelberg, Germany (2010)10.1007/978-3-642-01864-0Search in Google Scholar

Published Online: 2015-11-18
Published in Print: 2015-11-16

© 2015, Carl Hanser Verlag, München

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110813/html
Scroll to top button