Home Wear Behaviour of Heat Treated 100Cr6 Steels
Article
Licensed
Unlicensed Requires Authentication

Wear Behaviour of Heat Treated 100Cr6 Steels

  • Şeyda Polat , Enbiya Türedi , Ş. Hakan Atapek and Merve Köseoğlu
Published/Copyright: August 22, 2013
Become an author with De Gruyter Brill

Abstract

In this study, several heat treatments were applied to DIN 100Cr6 steel to obtain different matrices. In the first stage of the study, solution annealing treatment was applied to the steel and cooling was carried out in various media (furnace, oil, and salt bath). In order to eliminate the stresses after transformation from austenization, a low temperature tempering treatment was applied to the quenched samples. All heat treated samples were examined using light microscopy after metallographic preparations. In the second step, ‘ball-on-disc’ type tribometer was used to determine the friction coefficient of the steels depending on the matrix phase. Weight loss was recorded and the friction coefficient versus distance was plotted for each steel. Worn surfaces of the steels were examined using scanning electron microscopy to characterize the wear mechanisms. It turned out that (i) pearlitic, bainitic and martensitic matrices could be obtained depending on the cooling medium, (ii) martensitic matrix had higher wear resistance based on its weight loss, (iii) abrasive and adhesive wear tracks were present on the worn surfaces of the steels.

Abstract

In der diesem Beitrag zugrunde liegenden Studie wurde DIN Stahl 100Cr6 verschiedenen Wärmebehandlungen unterzogen, um unterschiedliche Gefüge einzustellen. Im ersten Stadium der Studie wurde der Stahl lösungsgeglüht und in verschiedenen Medien (Ofen, Ölbad und Salzbad) abgekühlt. Um die Spannungen nach der Transformation der Austentisierung zu elemnieren, wurde eine niedrige Anlasstemperatur für die abgeschreckten Proben gewählt. Alle wärmebehandelten Proben wurden mittels Lichtmikroskopie nach metallo­graphischer Präparation untersucht. Im zweiten Schritt wurde ein Ball-auf-Scheibe-Tribometer eingesetzt, um den Reibkoeffizient der Stähle abhängig von den Phasen im Gefüge zu bestimmen. Der Gewichtsverlust wurde aufgezeichnet und der Reibkoeffizient versus dem Abstand wurde für jeden Stahl aufgetragen. Die verschlissenen Oberflächen wurden mit Raster­elektronenmikroskopie untersucht, um die jeweiligen Verschleißmechanismen zu charakterisieren. Es zeigte sich, dass (i) perlitische, bainitische und martensitische Gefüge abhängig vom Kühlmedium erhalten werden können, (ii) ein martensitisches Gefüge basierend auf dem Gewichtsverlust einen höheren Verschleißwiderstand aufweist und (iii) abrasive und adhäsive Verschleißspuren auf den verschlissenen Oberflächen der Stahlproben auftreten.

References

1 http://www.promshop.info/cataloguespdf/a083-084.pdfSearch in Google Scholar

2 C. A.Stickels, A. M.Janotik: Controlling residual stresses in 52100 bearing steel by heat treatment, Metallurgical and Materials Transactions A11 (1980), pp. 46747310.1007/BF02654570Search in Google Scholar

3 H.Jacobi, F.Rakoski: High purity in steels as a criterion for materials development, Journal de Physique IV5 (1995), pp. 32210.1051/jp4:1995701Search in Google Scholar

4 G. K.Bhat, A. E.Nehrenberg: A study of the metallurgical properties that are necessary for satisfactory bearing performance and the development of improved bearing alloys for service up to 1000 F, WADC Technical Report 57-343, ASTIA Document No: 142117, USA (1957)Search in Google Scholar

5 L.Zhang, B. G.Thomas: Inclusions in continuous casting of steel, Proc. of the XXIVth National Steelmaking Symposium, Morelia, Mexico (2003), pp. 138183Search in Google Scholar

6 N.Miroslav: Turning of roll bearing steel 100Cr6 of bainite structure, Proc. of the 7th International Multidisciplinary Conference, Romania (2007), pp. 543548Search in Google Scholar

7 A.Guo, X.Song, J.Tang, Z.Yuan: Effect of tempering temperature on the mechanical properties and microstructure of an copper-bearing low carbon bainitic steel, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material15 (2008), pp. 384210.1016/S1005-8850(08)60008-0Search in Google Scholar

8 M.Perez, C.Sidoroff, A.Vincent, C.Esnouf: Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: from thermoelectric power measurements to the prediction of dimensional changes, Acta Materialia57 (2009), pp. 3170318110.1016/j.actamat.2009.03.024Search in Google Scholar

9 W.Püttgen, B.Hallstedt, W.Bleck, J. F.Löffler, P. J.Uggowitzer: On the microstructure and properties of 100Cr6 steel processed in the semi-solid state, Acta Materialia, 55 (2007), pp. 6553656010.1016/j.actamat.2007.08.010Search in Google Scholar

10 V.Bulancea: The microstructure in the cryogenic treated bearing steels, Annuals of the University of Craiova, Electrical Engineering Series30 (2006), pp. 395398Search in Google Scholar

11 G. E.Totten: Steel Heat Treatment Handbook, 2nd Edition, CRC Press, Boca Raton (2007)10.1201/9781482293029Search in Google Scholar

12 W. C.Leslie: The Pysical Metallurgy of Steels, McGraw-Hill International Book Company, USA (1982)Search in Google Scholar

13 J. D.Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, USA (1975)Search in Google Scholar

14 R. W. K.Honeycombe: Steels – Microstructure and Properties, Metallurgy and Materials Science Series, Edward Arnold, London, UK (1981)Search in Google Scholar

15 H. K. D. H.Bhadeshia: Martensite and bainite in steels: transformation mechanism & mechanical properties, Journal de Physique IV7 (1997), pp. 36737610.1051/jp4:1997558Search in Google Scholar

16 K. D. H.Bhadeshia: Bainite in Steels, 2nd Edition, Cambridge University Press, Cambridge, UK (2001)Search in Google Scholar

17 R. C.Thomson: Characterization of carbides in steels using atom probe field-ion microscopy, Materials Characterization44 (2000), pp. 21923310.1016/S1044-5803(99)00061-3Search in Google Scholar

18 A. D. B.Gingell, H. K. D. H.Bhadeshia, D. G.Jones, K. J. A.Mawella: Carbide precipi­tation in some secondary hardened steels, Journal of Materials Science32 (1997), pp. 4815482010.1023/A:1018695317549Search in Google Scholar

19 Ş.Karagöz, H. F.Fischmeister, H. O.Andren, C.Guang-Jun: Microstructural changes during overtempering of high speed steels, Metallurgical Transactions A23 (1992), pp. 1631164010.1007/BF02804359Search in Google Scholar

20 D. W.Hetzner, W.VanGeertruyden: Crystallography and metallography of carbides in high alloy steels, Materials Characterization59 (2008), pp. 82584110.1016/j.matchar.2007.07.005Search in Google Scholar

21 Y.Wang, T.Lei, J.Liu: Tribo-metallographic behaviour of high carbon steels in dry sliding, I. Wear mechanisms and their transition, Wear231 (1999), pp. 111Search in Google Scholar

22 Y.Wang, T.Lei, J.Liu: Tribo-metallographic behaviour of high carbon steels in dry sliding, II. Microstructure and wear, Wear231 (1999), pp. 1219Search in Google Scholar

Published Online: 2013-08-22
Published in Print: 2013-04-02

© 2013, Carl Hanser Verlag, München

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110437/html?lang=en
Scroll to top button