Home Physical Sciences Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants
Article
Licensed
Unlicensed Requires Authentication

Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants

  • Jiao Yan , Qiaona Liu , Weichao Du , Chengtun Qu , Zhifei Song , Jinling Li , Jie Zhang and Gang Chen
Published/Copyright: March 9, 2020
Become an author with De Gruyter Brill

Abstract

In order to expand the application range of surfactants, octadecyl trimethyl ammonium chloride (OTAC) and polyacrylic acid (PAA) were used as raw materials to synthesize octadecyl trimethyl ammonium polyacrylic (OTAP). The molar ratios of OTAC to polyacrylic acid monomer were 1:1, 1:2 and 1:3. The synthesized compounds were named as OTAP-1, OTAP-2, OTAP-3. The obtained research results show that the best foaming ability was achieved with OTAP-1, and the best foam stability with OTAP-2. When the concentration was 2.0 g/L, the order of the emulsifying ability was: OTAP-1 > OTAP-2 > OTAP-3; when the concentration was 4.0 g/L, the emulsifying ability order was OTAP-2 > OTAP-3 > OTAP-1. OTAP-1 had a corrosion inhibition capacity of up to 85.11 %, and OTAP-2 and OTAP-3 had a sustained release rate of 81.06 % and 72.82 %, respectively. OTAP-3 had a good effect on scale inhibition, and the scale inhibition rate was 65.01 %.

Kurzfassung

Um den Anwendungsbereich der Tenside zu erweitern, wurden Octadecyltrimethylammoniumchlorid (OTAC) und Polyacrylsäure (PAA) als Ausgangsmaterialien zur Synthese von Octadecyltrimethylammoniumpolyacrylat (OTAP) verwendet. Die Molverhältnisse von OTAC zu Polyacrylsäuremonomer betrugen 1:1, 1:2 und 1:3, die synthetisierten Verbindungen wurden als OTAP-1, OTAP-2, OTAP-3 bezeichnet. Die erhaltenen Forschungsergebnisse zeigen, dass das Schaumvermögen von OTAP-1 und die Schaumstabilität von OTAP-2 am besten waren. Bei einer Konzentration von 2,0 g/L, folgte das Emulgiervermögen der Reihe OTAP-1 > OTAP-2 > OTAP-3; betrug die Konzentration 4,0 g/L−1 war das Emulgiervermögen OTAP-2 > OTAP-3 > OTAP-1. Die Korrosionsinhibitionskapazität von OTAP-1 lag bei 85,11 %, die von OTAP-2 bzw. OTAP-3 betrug 81,06 % bzw. 72,82 %. OTAP-3 zeigt eine gute Wirkung auf die Kalkinhibition, die Kalkinhibitionsrate betrug 65,01 %.


Correspondence address, Prof. Dr. Gang Chen, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, 710065, State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China, E-Mail:

Chen Gang is Professor at Xi'an Shiyou University. His research areas are Oilfield Chemistry and Petroleum Chemistry. He is member of Chinese Chemical Society and Chemical Industry and Engineering Society of China. He has finished 20 research projects, and published more than 30 research papers. He is also reviewer of 15 academic journals.

Jie Zhang is a professor of applied chemistry.


References

1. Fei, Y., Pokalai, K., Johnson, R., Gonzalez, M. and Haghighi, M.: Experimental and simulation study of foam stability and the effects on hydraulic fracture proppant placement, J. Nat. Gas Sci. Eng.46 (2017) 544554. 10.1016/j.jngse-2017-08-020Search in Google Scholar

2. Morikawa, H., Morishima, Y., Motokucho, S., Morinaga, H., Nishida, H. and Endo, T.: Synthesis and association behavior of cationic amphiphilic copolymers consisting of quaternary ammonium and nonionic surfactant moieties, J. Polym. Sci. A Polym. Chem, 45 (2007) 50225030. 10.1002/pola-22322Search in Google Scholar

3. Qin, L. and Wang, X.-H.: Surface adsorption and thermodynamic properties of mixed system of ionic liquid surfactants with cetyltrimethyl ammonium bromide, RSC Adv.7 (2017) 5142651435. 10.1039/c7ra08915eSearch in Google Scholar

4. Migahed, M. A., Shaban, M. M., Fadda, A. A., Ali, T. A. and Negm, N. A.: Synthesis of some quaternary ammonium gemini surfactants and evaluation of their performance as corrosion inhibitors for carbon steel in oil well formation water containing sulfide ions, RSC Adv, 5 (2015) 104480104492. 10.1039/c5ra15112kSearch in Google Scholar

5. Negm, N. A., Farargy, A. F. M. E., Mohammed, D. E. and Mohamad, H.N.: Environmentally friendly nonionic surfactants derived from tannic acid: synthesis, characterization and surface activity, J Surfact Deterg.15 (2012) 433443. 10.1007/s11743-011-1326-8Search in Google Scholar

6. Jiang, N., Sheng, Y., Li, C. and Lu, S.: Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants, J. Mol. Liq.268 (2018) 249255. 10.1016/j.molliq.2018.07.055Search in Google Scholar

7. Wilson, A. J. Foams, physics, chemistry and structure. Springer Series in Applied Biology (1989). 10.1007/978-1-4471-3807-5Search in Google Scholar

8. Romani, A. P., Gehlen, M. H. and Itri, R.: Surfactant–polymer aggregates formed by sodium dodecyl sulfate, poly(N-vinyl-2-pyrrolidone), and poly(ethylene glycol), Langmuir.21 (2005) 127133. PMid:15620293; 10.1021/la0482296Search in Google Scholar PubMed

9. Lunkenheimer, K. and Malysa, K.Simple and generally applicable method of determination and evaluation of foam properties. J Surfact Deterg6 (2003) 6974. 1007/s11743-003-0251-8Search in Google Scholar

10. Patel, P. D., Stripp, A. M. and Fry, J. C.Whipping test for the determination of foaming capacity of protein: a collaborative study, J Food Sci Tech.23 (1988) 5763. 10.1111/j.1365-2621.1988.tb00550.xSearch in Google Scholar

11. Kuliszwska, E. and Brecker, L.Gemini surfactants foam formation ability and foam stability depends on spacer length. J Surfact Deterg17 (2014) 951957. 10.1007/s11743-014-1582-5Search in Google Scholar

12. Al-Sabagh, A. M., Harding, D. R. K., Kandile, N. G., Badawi, A. M., and El-Tabey, A.: synthesis of some novel nonionic ethoxylated surfactants based on α-amino acids and investigation of their surface active properties, J Dispers Sci Technol.30 (2009) 427438. 10.1080/01932690802537174Search in Google Scholar

13. Fernandes, R. M. F., Wang, Y., Tavares, P. B., Nunes, S. C. C., Pais, A. A. C. C. and Marques, E. F.: Critical role of the spacer length of gournal, Phys Chem B.121 (2017) 1058310592. PMid:29064700; 10.1021/acs.jpcb.7b08618Search in Google Scholar

14. Kabir-ud-Din, Sharma G., Naqvi, A. Z., Chaturvedi, S. K. and Khan, R. H.: Ion-dipole induced interaction between cationic gemini/TTAB and nonionic (Tween) surfactants: interfacial and microstructural phenomena, RSC Adv.3 (2013) 6945. 10.1039/c3ra22691cSearch in Google Scholar

15. Koerner, C. Intergral foam molding of light metals: technology, foam simulation, Springer, Berlin Heidelberg (2008).Search in Google Scholar

16. Pugh, R. J. Foaming, foam film, antifoaming and defoaming, Adv Colloid Interface Sci.64 (1996) 67142. 10.1016/0001-8686(95)00280-4Search in Google Scholar

17. Al-Sabagha, A. M., Emarab, M. M., Noor El-Din, M. R. and Aly, W. R.: Formation of water-in-diesel-oil nano-emulsions using high energy method and studying some of their surface active properties, Polym Adv Technol, 20 (2011)1723. 10.1016/j.ejpe.2011.06.005Search in Google Scholar

18. Chen, G., Bai, Y., Liu, Q. N., Zhang, J., Gu, X. F., Li, H., Qu, C. T., Zhang, Y. M.: Synthesis and interface activity of a series of dicarboxylic cationic surfactants and structure-efficiency relationship study, J. Surfactants Deterg.22 (2019) 691698. 10.1002/jsde.12264Search in Google Scholar

19. Abdul-Raouf, E. S., Abdul-Raheim, A. R. M., Maysour, E. S. and Mohamed, H.: Synthesis, surface-active properties, and emulsification efficiency of trimeric-type nonionic surfactants derive from tris(2-aminoethyl)amine, J Surfact Deterg.14 (2011) 185193. 10.1007/s1174443-010-122-7Search in Google Scholar

20. Xu, X.J., Guo, J. W. and Zhong, X.: Synthesis and properties of novel cationic gemini surfactants with adamantane spacer, Chin Chem Lett.25 (2014) 367369. 10.1016/j.cclet.2013.11.010Search in Google Scholar

21. Yousefi, A., Javadian, S. and Neshati, J.: A New approach to study the synergistic inhibition effect of cationic and anionic surfactants on the corrosion of mild steel in HCl solution, Ind Eng Chem Res.53 (2014) 54755489. 10.1021/ie402547mSearch in Google Scholar

22. Liu, Q.N., Gao, M.L., Zhao, Y., Li, J.L., Qu, C.T., Zhang, J., Chen, G.: Synthesis and interface activity of a new quaternary ammonium surfactant as an oil/gas field chemical, Tenside Surf. Det.57(1) (2020) 9096. 10.3139/113.110665Search in Google Scholar

23. Quraishi, M. and Jamal, D.: Fatty acid triazoles: novel corrosion inhibitor for oil well steel (N-80) and mild steel, J Am Oil Chem Soc.77 (2000) 11071111. 10.1007/s11746.000.0174-6Search in Google Scholar

24. Zhang, J., Bai, Y., Du, W. C., Wu, Y., Gu, X. F., Li, H., Ma, Y., Qu, C. T., Chen, G.: The effect of anion on cationic surfactants and a structure-efficiency relationship study, Desalination and Water Treatment.140 (2019) 207211. 10.5004/dwt.2019.23371Search in Google Scholar

25. Du, K., Zhou, Y., Wang, L. and Wang, Y.: Fluorescent-tagged no phosphate and nitrogen free calcium phosphate scale inhibitor for cooling water systems, J. Appl. Polym. Sci.113 (2009) 19661974. 10.1002/app.30213Search in Google Scholar

26. Tang, Y. G., Zhang, F., Cao, Z. Y., Wen, H. and Yi, Z.: Crystallization of CaCO3 in the presence of sulfate and additives: Experimental and molecular dynamics simulation studies, J Colloid Interf Sci.377 (2012) 430437. PMid:22487230; 10.1016/j.jcis.2012.02.069Search in Google Scholar PubMed

27. Jiang, T., Sun, Y., Yin, Z., Feng, S., Sun, L. and Li, Z.: Research progress of indoleamine 2,3-dioxygenase inhibitors, Future Med Chem.7 (2015) 185201. PMid:25686005; 10.4155/fmc.14.151Search in Google Scholar PubMed

Received: 2019-01-11
Accepted: 2019-06-16
Published Online: 2020-03-09
Published in Print: 2020-03-16

© 2020, Carl Hanser Publisher, Munich

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110674/html?lang=en&srsltid=AfmBOorVCxZJdLfYmL_AeuPOjDZvhFC81LJNIK2U1-8MC95Q3zDkkL-x
Scroll to top button