Lyotropic Lamellar Mesophase. Magneto-Morphologic Transforma tions and Optical Refracting Properties: Effect of Optically Active Dopants
-
Yasemin Altınay
Abstract
Effect of optically active dopants on the morphologic and optical refracting properties of the lyotropic liquid crystalline mesophase with anisometric micelles has been investigated. Lyotropic lamellar mesophases, which are formed by the plate-like micelles of quasi-indef inite diameter, were objects of the investigations. Wine acid (WA) and tartaric acid (TA) were used as the optically active dopants. Texture transformations under influence of an external magnetic field and time and temperature changes of these textures for quaternary mixtures with various concentrations of the optically active dopants have been studied. Unusual textures with the spherical microdroplet formations have been found and studied. The optical refracting properties of ternary and quaternar y lyotropic systems vs. temperature and concentration were investigated.
Kurzfassung
Der Einfluss optisch aktiver Dotierstoffe auf die morphologischen und optischen Brechungseigenschaften der lyotropen flüssigkristallinen Mesophase mit anisometrischen Mizellen wurde untersucht. Gegenstand der Untersuchungen waren lyotrope lamellare Mesophasen, die von plättchenförmigen Mizellen mit quasi-unbestimmtem Durchmesser gebildet werden. Als optisch aktive Dotierstoffe wurden Weinsäure (WA) und Weinsäure (“tartaric acid” = TA) verwendet. Texturtransformationen unter Einfluss von externen Magnetfeld-, Zeit- und Temperaturänderungen dieser Texturen für quaternäre Gemische mit verschiedenen Konzentrationen der optisch aktiven Dotierstoffe wurden untersucht. Es wurden ungewöhnliche Texturen mit kugelförmigen Mikrotröpfchenformationen gefunden und untersucht. Die optischen Brechungseigenschaften von ternären und quaternären lyotropen Systemen abhängig von Temperatur und Konzentration wurden untersucht.
References
1 Figueiredo Neto, A. M. and Salinas, S. R. A.: The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties, Oxford University Press, Oxford (2005) 320. 10.1093/acprof:oso/9780198525509.001.0001Suche in Google Scholar
2 Petrov, A. G.: The Lyotropic State of Matter: Molecular Physics and Living Matter Physics, Gordon & Breach Science Publishers, London – New York (1999) 549. ISBN: 9789056996383.Suche in Google Scholar
3 Friberg, S.: Organized Solutions: Surfactants in Science and Technology, CRC Press, New York (1992) 410. ISBN: 9780824786984.Suche in Google Scholar
4 Sonin, A. S.: Lyotropic nematics, Sov. Phys. Usp. 30 (1987) 875–912. 10.1070/PU1987v03n10ABEH002967Suche in Google Scholar
5 Nesrullajev, A.: Lyotropic Liquid Crystalline Systems: Amphiphilic Systems, Mugla University Press, Mugla (2007) 284. ISBN: 978-975-7207-85-6.Suche in Google Scholar
6 Ekwall, P.: Composition, Properties and Structures of Liquid Crystalline Phases in Systems of Amphiphilic Compounds. In: Brown, G. H. (Ed) Advances in Liquid Crystals, Academic Press, New York/San Francisco/London, 1 (1975) 1–145. 10.1016/b978-0-12-025001-1.50007-xSuche in Google Scholar
7 Hiltrop, K.: Lyotropic liquid crystals In: Liquid Crystals, H. Stegemeyer, H. Behret (eds), Springer, 3 (1994) 143–171. 10.1007/978-3-662-08393-2_4Suche in Google Scholar
8 Nesrullajev, A.: Sizes and Anisometricity of Micelles in Lyotropic Liquid Crystalline Mesophases: Sodium Lauryl Sulphate/Water/Decanol Lyotropic System, Tens. Surf. Deterg., 47 (3) (2010) 178–18. 10.3139/113.110068Suche in Google Scholar
9 Nesrullajev, A., Kazancı, N. and Yıldız, T.: Hexagonal lyotropic liquid crystalline mesophase: change of rod-like micelles sizes with changes in concentrations, Mat. Chem. Phys., 80 (2003) 710–713. 10.1016/S0254-0584(03)00079-8Suche in Google Scholar
10 Gray, G. W. and Winsor, P. A.: Plastic Crystals and Liquid Crystals, (Eds.) Ellis Horwood, Chichester, 2 (1975) 840–840. 10.1002/bbpc.19750790929Suche in Google Scholar
11 Dawin, U. C., Dilger, H., Roduner, E., Scheuermann, R. and Stoykov, A.: Chiral Induction in Lyotropic Liquid Crystals: Insights into the Role of Dopant Location and Dopant Dynamics, Ang. Chemie, 49 (2010) 2427–2430. PMid:20196155; 10.1002/anie.200904107Suche in Google Scholar
12 Dörfler, H.-D.: Chirality, twist and structures of micellar lyotropic cholesteric liquid crystals in comparison to the properties of chiralic thermotropic phases, Adv. Colloid Interface Sci., 98 (2002) 235–340. 10.1016/S0001-8686(01)00095-1Suche in Google Scholar
13 Ogolla, T., Paley, R. S. and Collings, P. J.: Temperature dependence of the pitch in chiral lyotropic chromonic liquid crystals, Soft Matter, 15 (2019) 109–115. PMid:30534734; 10.1039/C9SM90032BSuche in Google Scholar PubMed
14 Deniset-Besseau, A., De Sa Peixoto, P., Mosser, G. and Schanne-Klein, M. C.: Nonlinear optical imaging of lyotropic cholesteric liquid crystals, Opt. Express, 18 (2010) 1113–1121. PMid:20173934; 10.1039/C8SM02091DSuche in Google Scholar PubMed
15 Bartusch G. , Dörfler, H.-D. and Hoffmann, H.: Behavior of lyotropic-nematic and lyotropic-cholesteric phases, Progr. Colloid Polym. Sci., 89 (1992) 307–314. 10.1007/BFb0116336Suche in Google Scholar
16 Radley, K. and Lilly, G. J.: Potassium salts of acylated amino acids as chiral dopants and hosts in the formation of amphiphilic cholesteric liquid crystals, Liq. Cryst., 231 (1993) 183–190. 10.1080/10587259308032504Suche in Google Scholar
17 Partyka, J. and Hiltrop, K.: On chirality induction in lyotropic nematic liquid crystals, Liq. Cryst., 20 (1996) 611–618. 10.1080/02678299608031150Suche in Google Scholar
18 Lueders, D. D., Zoner, G. A., Santos, O. R., Braga, W. S., Sampao, A. R., Kimura, N. M., Palangana, A. J. and Simoes, M.: An image processing study of reentrrant discotic cholesteric – biaxial cholesteric phase transition, Phase Trans., 91 (2018) 398–405. 10.1080/01411594.2017.1403606Suche in Google Scholar
19 Valente, L., Figueiredo Neto, A. M.: Influence of the microscopic shape anisotropy of the micelles on the pitch in a cholesteric liquid crystal, Phys. Rev. A, 38 (1988) 1191–1104. PMid:9900479; 10.1103/PhysRevA.38.1101Suche in Google Scholar
20 Figueiredo Neto, A. M.: Micellar cholesteric lyotropic liquid crystals, Liq. Cryst. Res., 2 (2014) 47–59. 10.1080/21680396.2014.938783Suche in Google Scholar
21 Hartshome, N. H.: The microscopy of liquid crystals, Microscope Publications, London/Chicago (1974) 280. 10.1002/zfch.19770170729Suche in Google Scholar
22 Demus, D. and Richter, L.: Textures of Liquid Crystals, Verlag Chemie, Weinheim, 16 (1980) 527–527. 10.1002/crat.19810160422Suche in Google Scholar
23 Dierking, I.: Textures of Liquid Crystals, Wiley – VCH Verlag, Weinheim, (2003) 218. 10.1002/3527602054Suche in Google Scholar
24 Lydon, J.: In: Handbook of Liquid Crystals, Edited by Demus, D., Goodby, J., Gray, G.W.Spiess, H.W. and Vill, V. (Ed), Wiley – VCH, Weinheim, IIB (1998) 981. 10.1002/9783527620623Suche in Google Scholar
25 Nehring, J. and Saupe, A.: On the schlieren texture in nematic and smectic liquid crystals, J. Chem. Soc., Faraday Trans. 1, 68 (1972) 1. 10.1039/F29726800001Suche in Google Scholar
26 Zimmer, J. E.: Disclinations in lamellar liquid crystals, PhD Dissertation. Purdue University, W. Lafayette, Indiana (1978).Suche in Google Scholar
27 Ozden, P., Nesrullajev, A. and Oktik, S.: Phase states and thermomorphologic, thermotropic, and magnetomorpholologic properties of lyotropic mesophase: Sodiom lauryl sulphate-water-1-decanol liquid crystalline system, Phys. Rev. E82 (2010) 061701 (1–8). PMid:21230678; 10.1103/PhysRev.E.82.061701Suche in Google Scholar
28 White, J. L. and Zimmer, J. E.: Twist disclinations in the carbonaceous mesophase, Carbon16 (1978) 469. 10.1016/0008–6223(78)90094–5Suche in Google Scholar
29 Zimmer, J. E. and White, J. L.: Disclination structures in the carbonaceous mesophase, Adv. Liq. Cryst. 5 (1982) 157–213. 10.1016/B978–0-12–025005–9.50011–4Suche in Google Scholar
30 Nesrullajev, A.: Peculiarities of inversion walls and singular points in oriented textures of nematic mesophase, Cryst. Res. Techn. 44 (2009) 747–753. 10.1002/crat.200900134Suche in Google Scholar
31 Nesrullajev, A.: Lyotropic nematic mesophases: Peculiarities of singularities and inversion walls in specific and non-specific textures, Optoelectr. Adv. Mater. – Rapid Comm. 7 (2013) 604–610.Suche in Google Scholar
32 Scharf, T.: Polarized light in liquid crystals and polymers, Wiley & Sons, Hoboken/New Jersey, (2007). ISBN:9780470074374. 10.1002/047007437XSuche in Google Scholar
33 Candau, F., Ballet, F., Debauvais, F. and Wittmann, J. C.: Structural properties and topological defects of swollen polymeric mesophass: Low angle X-ray diffraction and optical microscopic studies, J. Colloid Interface Sci., 87 (1982) 356–374. 10.1016/0021-9797(82)90333-2Suche in Google Scholar
34 Nemitz, I. R., Ferris, A. J., Lacaze, E. and Rosenblatt, C.: Chiral oily streaks in a smectic-A liquid crystal, Soft Matter, 12 (2016) 6662–6668. PMid:27426740; 10.1039/C6SM01238HSuche in Google Scholar
35 Saupe, A.: Textures, deformations, and structural order of liquid crystals, J. Colloid Interface Sci., 58 (1977) 549–558. 10.1016/0021-9797(77)90164-3Suche in Google Scholar
36 Kurik, V. M. and Lavrentovich, O. D.: Review of topical problems: Defects in liquid crystals: homotopy theory and experimental studies, Sov. Phys. Usp., 31 (1988) 196–224. 10.1070/PU1988v031n03ABEH005710Suche in Google Scholar
37 Boltenhagen, P., Lavrentovich, O. and Kleman, M.: Oily straks and focal conic domains in Lα lyotropic liquid crystals, J. de Phys. II, 1 (1991) 1233–1252. 10.1051/jp2:1991130Suche in Google Scholar
38 Chistyakov, I. G.: Liquid Crystals, Science Publ., Moscow, 98 (1966) 563. 10.3367/UFNr.0089.196608c.0563Suche in Google Scholar
39 Schneider, M. B. and Webb, W. W.: Undulating paired disclinations (oily streaks) in lyotropic liquid crystals, J. de Phys., 45 (1984) 393–422. 10.1051/jphys:01984004502037300Suche in Google Scholar
40 Basappa, G., Suneel Kumaran, V., Nott, P. R., Ramaswami, S., Naik, V. M. and Rout, D.: Structure and rheology of the defect – jel states of pure and particle – dispersed lyotropic lamellar phases, Eur. Phys. J. B, 12 (1999) 269–276. 10.1007/s100510051004Suche in Google Scholar
41 Muniandy, S. V., Kan, C. S., Lim, S. C. and Radiman, S.: Fractal Analysis of lyotropic lamellar liquid crystal textures, Physica A, 323 (2003) 107–123. 10.1016/S0378-4371(03)00026-8Suche in Google Scholar
42 Nesrullajev, A.: Structural peculiarities of micelles in lamellar mesophase of lyotropic liquid crystalline systems: Shape, sizes and anisometricity, J. Mol. Liq., 187 (2013) 337–342. 10.1016/j.molliq.2013.08.017Suche in Google Scholar
43 Zhang, F. and Yang, D.-K.: Evolution of disclinations in cholesteric liquid crystals, Phys. Rev. E, 66 (2002) 041701. PMid:12443217; 10.1103/PhysRevE.66.041701Suche in Google Scholar PubMed
44 Lavrentovich, O. D. and Kleman, M.: Cholesteric liquid crystals: Defects and topology, in: Chirality in Liquid crystals, Eds. Kitzerow, H.S., Bahr, C., Springer Verlag, New York, 5 (2001) 115–158. 10.1007/0-387-21642-1_5Suche in Google Scholar
45 Kurik, V. M. and Lavrentovich, O. D.: Defects in liquid crystals: Homeotropic theory and experimental investigations, Usp. Fiz. Nauk (Sov.), 154 (1989) 381–431. 10.1070/PU1988v031n03ABEH005710Suche in Google Scholar
46 Boltenhagen, P., Lavrentovich, O. and Kleman, M.: Oily straks and focal conic domains in Lα lyotropic liquid crystals, J. de Phys. II, 1 (1991) 1233–1252. 10.1051/jp2:1991130Suche in Google Scholar
47 Sonin, A. S.: Introduction to the Physics of Liquid Crystals, Science Publ., Moscow, (1984) 317. C1704060000-000151-83.Suche in Google Scholar
48 Nesrullajev, A.: Lyotropic Mesophase in Amphiphile + Aliphatic Alcohol Mixtures with Additions of Water: Mesomorphic, Thermo-Morphologic and Optical Refracting Properties, Coll. Polym. Sci., 295 (2017) 837–847. 10.1007/s00396-017-4068-ySuche in Google Scholar
49 Yokoyama, H.: Tunable whispers, Nature Photonics, 3 (2009) 560–561. 10.1038/nphoton.2009.179Suche in Google Scholar
50 Co-crystals successfully turn liquids into solids, Source Newsroom: American Institute of Physics, Article, (2014). ID: 621465.Suche in Google Scholar
51 Humar, M.: Liquid-crystal-droplet optical microcavities, Liq. Cryst., 43 (2016) 1937–1950. 10.1080/02678292.2016.1221151Suche in Google Scholar
52 Nehring, J. and Saupe, A.: On the schlieren texture in nematic and smectic liquid crystals, J. Chem. Soc., Faraday Trans., 68 (1972) 1–15. 10.1039/f29726800001Suche in Google Scholar
53 de Gennes, P. G.: Physics of Liquid Crystals, Oxford University Press, Oxford – London (1977) 400.Suche in Google Scholar
54 Goto, H.: Preparation of lyotropic liquid crystals and optical characterisation, Intern. Lett. Chem., Phys. and Astron. 64 (2016) 71–77. 10.18052/www.scipress.com/ILCPA.64.171Suche in Google Scholar
55 Horn, R. G.: Refractive indices and order parameters of two liquid crystals, J. de Phys., 39 (1978) 105–109. 10.1051/jphys:01978003901010500Suche in Google Scholar
56 Candel, V. C., Manohar, R. and Shukla, J. P.: Refractive indices, order parameter and density study of BKS/B07 nematic liquid crystal, Ann. Univ. Bucur., 20 (2011) 155–163. ISSN: 1220–871X.Suche in Google Scholar
57 Mamuk, A. E. and Nesrullajev, A.: Refractive and birefringent properties and order parameter of nematic liquid crystal at the direct and reverse nematic ↔ isotropic liquid phase transitions, J. Optoelectr. Adv. Mater., 18 (2016) 928–937. ISSN: 1454–4164.Suche in Google Scholar
58 Thimgujan, K. D., Alapati, P. R., Choudhury, B. and Bhattarcharjee, A.: Optical studies of a liquid crystalline compound 6O.6, Liq. Cryst., 40 (2013) 810–816. 10.1080/02678292.2013.783132Suche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Novel Surfacnts
- The Physico-Chemical Properties of Sugar-Oxime-Ether Surfactants
- Statistical Optimisation of Rhamnolipid Production using a Pseudomonas putida Strain Cultivated on Renewable Carbon Sources of Waste Vegetable Oils
- Physical Chemistry
- Lyotropic Lamellar Mesophase. Magneto-Morphologic Transforma tions and Optical Refracting Properties: Effect of Optically Active Dopants
- System-based Approach to Prediction of Surfactants’ Influences on Pharmaco-kinetics and Pharmacodynamics
- Analysis
- Determination of Melphalan by Micelle Enhanced Spectrofluorimetric Method: Application to Content Uniformity Testing and Human Plasma
- Corrosion Inhibitor
- Experimental and Computational Study of Ecofriendly Synthesize d Imine Cationic Surfactants as Corrosion Inhibitors for Carbon Steel in 1 M HCl
- Preparation and Application of Modified Imidazole with MPEG (Polyethylene Glycol Monomethyl Ether) as Carbon Steel Inhibitor
- Application
- Properties and Vesicle Formation in Mixed Systems of a Branched Anionic Carboxylate Surfactant and a Cationic Surfactant
- Synthesis
- Synthesis and Properties of a Quaternary Ammonium Salt Gemini Surfactant with Diethyl Ether as the Spacer Group
- Synthesis and Interfacial Activity of a New Quaternary Ammonium Surfactant as an oil/gas field chemical
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Novel Surfacnts
- The Physico-Chemical Properties of Sugar-Oxime-Ether Surfactants
- Statistical Optimisation of Rhamnolipid Production using a Pseudomonas putida Strain Cultivated on Renewable Carbon Sources of Waste Vegetable Oils
- Physical Chemistry
- Lyotropic Lamellar Mesophase. Magneto-Morphologic Transforma tions and Optical Refracting Properties: Effect of Optically Active Dopants
- System-based Approach to Prediction of Surfactants’ Influences on Pharmaco-kinetics and Pharmacodynamics
- Analysis
- Determination of Melphalan by Micelle Enhanced Spectrofluorimetric Method: Application to Content Uniformity Testing and Human Plasma
- Corrosion Inhibitor
- Experimental and Computational Study of Ecofriendly Synthesize d Imine Cationic Surfactants as Corrosion Inhibitors for Carbon Steel in 1 M HCl
- Preparation and Application of Modified Imidazole with MPEG (Polyethylene Glycol Monomethyl Ether) as Carbon Steel Inhibitor
- Application
- Properties and Vesicle Formation in Mixed Systems of a Branched Anionic Carboxylate Surfactant and a Cationic Surfactant
- Synthesis
- Synthesis and Properties of a Quaternary Ammonium Salt Gemini Surfactant with Diethyl Ether as the Spacer Group
- Synthesis and Interfacial Activity of a New Quaternary Ammonium Surfactant as an oil/gas field chemical