Foaming and Cleaning Performance Comparison of Liquid Detergent Formulations using Mixtures of Anionic and Nonionic Surfactants
-
R. Arun Karthick
Abstract
Modern detergents are typically appreciated for their cleaning performance rather than foaming characteristics. The aim of the current study was to compare the foaming and cleaning abilities of liquid detergents, built from a combination of surfactants, to be applied for household laundry purpose. A total of eighteen different liquid detergent formulations containing mixtures of important anionic, nonionic surfactants, and other additives were prepared. The first set of nine new detergent formulations (S1) was prepared using the surfactants sodium lauryl sulfate (SLS), Tween-20 and Tween-80. Another set of nine new detergent formulations (S2) was prepared using surfactants SLS, Triton X-100 and alkyl polyglucoside (APG). The impact of water quality (RO, hypersaline or hard water) on the foam properties of the detergent formulation sets (S1 and S2) was systematically examined. The second set of detergent formulations (S2) showed a better performance in terms of foamability and foam stability, regardless of the water quality. Also, the surface tension of the detergent formulation set S2 was found to be lower and it showed a higher detergency for both cotton and woolen fabrics. The detergency of the formulation no S2.9 (in set S2) was the maximum amongst all the detergent formulations. The surface morphology of the cotton and woolen fabrics, washed with liquid detergent formulation no S2.9, displayed the removal of oily soil and grease from the surface of the fabrics, without affecting the quality of the fabrics.
Kurzfassung
Moderne Waschmittel werden typischerweise eher für ihre Reinigungsleistung als für ihre Schaumbildungseigenschaften geschätzt. Das Ziel der vorliegenden Studie war es, die Schaum- und Reinigungsleistung von Flüssigwaschmitteln zu vergleichen, die aus einer Kombination von Tensiden bestehen und für die Haushaltswäsche verwendet werden. Insgesamt wurden achtzehn verschiedene flüssige Waschmittelformulierungen hergestellt, die Mischungen von wichtigen anionischen, nichtionischen Tensiden und anderen Additiven enthielten. Der erste Satz von neun neuen Waschmittelformulierungen (S1) enthielt die Tenside Natriumlaurylsulfat (SLS), Tween-20 und Tween-80. Ein weiterer Satz von neun neuen Waschmittelformulierungen (S2) wurde unter Verwendung der Tenside SLS, Triton X-100 und Alkylpolyglucosid (APG) hergestellt. Die Auswirkung der Wasserqualität (RO, stark salzhaltiges oder hartes Wasser) auf die Schaumeigenschaften der Waschmittelformulierungssets S1 und S2 wurde systematisch untersucht. Das zweite Waschmittelformulierungset S2 zeigte unabhängig von der Wasserqualität eine bessere Leistung hinsichtlich der Schaumentstehung und Schaumstabilität. Auch wurde gefunden, dass die Oberflächenspannung des Waschmittelformulierungssets S2 niedriger war und eine höhere Waschleistung sowohl für Baumwolle als auch für Wollgewebe hatte. Die Formulierung Nr. S2.9 (in Satz S2) hatte die höchste Waschleistung unter allen Waschmittelformulierungen. Die Oberflächenmorphologie der mit der flüssigen Waschmittelformulierung Nr. S2.9 gewaschen Baumwoll- und Wollgewebe zeigte, dass öliger Schmutz und Fett von der Gewebeoberfläche entfernt werden konnten, ohne die Qualität der Gewebe zu beeinflussen.
References
1. Ou, J. and ZhaoJ.: Modification of Sodium Lignosulfonate and Evaluation of its Potential use as Detergent Builders. J. Wood Chem. Technol.37 (2016) 1–11. 10.1080/02773813.2016.1235589Search in Google Scholar
2. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena. 4th ed.John Wiley & Sons., Inc., Hoboken., New Jersey, (2004) 402–416. 10.1002/0471670561Search in Google Scholar
3. Biranje, Shivaji S., Nathany, A., Mehra, N. and Adivarekar, R.: Optimisation of Detergent Ingredients for Stain Removal Using Statistical Modelling. J. Surfactants Deterg.18 (2015) 949–956. 10.1007/s11743-015-1722-6Search in Google Scholar
4. Siwayanan, P., AzizR., Bakar, N. A., Ya, H., Jokiman, R. and Chelliapan, S.: Characterization of Phosphate-Free Detergent Powders Incorporated with Palm C16 Methyl Ester Sulfonate (C16MES) and Linear Alkyl Benzene Sulfonic Acid (LABSA). J. Surfactants Deterg.17 (2014) 871–880. 10.1007/s11743-014-1603-4Search in Google Scholar
5. Do, L. D., Attaphong, C., Scamehorn, J. F. and Sabatini, D. A.: Detergency of Vegetable Oils and Semi-Solid Fats Using Microemulsion Mixtures of Anionic Extended Surfactants: The HLD Concept and Cold Water Applications. J. Surfactants Deterg.18 (2014) 373–382. 10.1007/s11743-014-1659-1Search in Google Scholar
6. Ayele, L., Perez-Pariente, J., Chebude, Y. and Diaz, I.: Synthesis of zeolite A using kaolin from Ethiopia and its application in detergents. New J. Chem.40 (2016) 3440–3446. 10.1039/c5nj03097hSearch in Google Scholar
7. Sheng, Y., Xu, X., Jiang, W., Song, Y., Gan, S. and Zou, H.: Application of Oxidized Cornstarch as a Nonphosphoric Detergent Builder. J. Surfactants Deterg.15 (2012) 393–398. 10.1007/s11743-012-1329-0Search in Google Scholar
8. Zhang, J., Zhang, Y., Li, W., Li, X. and Lian, X.: Optimizing Detergent Formulation with Enzymes. J. Surfactants Deterg.17 (2014) 1059–1067. 10.1007/s11743-014-1626-xSearch in Google Scholar
9. Joshi, T., Mata, J. and Bahadur, P.: Micellization and interaction of anionic and nonionic mixed surfactant systems in water. Colloids Surf. A.260 (2005) 209–215. 10.1016/j.colsurfa.2005.03.009Search in Google Scholar
10. Gunjikar, J. P., Ware, A. M. and Momin, S. A.: Evaluation of Different Alkyl Polyglycoside Surfactants and Their Combination with Alpha Olefin Sulphonate for Detergency. J. Dispersion Sci. Technol.27 (2006) 265–269. 10.1080/01932690500267314Search in Google Scholar
11. Gotoh, K., Horibe, K., Mei, Y. and Tsujisaka, T.: Effects of Water Hardness on Textile Detergency Performance in Aqueous Cleaning Systems. J. Oleo Sci.65 (2016) 123–133. 26782305 10.5650/jos.ess15168Search in Google Scholar PubMed
12. Tanthakit, P., Chavadej, S., Scamehorn, J. F., Sabatini, D. A. and Tongcumpou, C.: Microemulsion Formation and Detergency with Oily Soil: IV. Effect of Rinse Cycle Design. J. Surfactants Deterg.11 (2008) 117–128. 10.1007/s11743-008-1062-xSearch in Google Scholar
13. Tanthakit, P., Ratchatawetchakul, P., Chavadej, S., Scamehorn, J. F., Sabatini, D. A. and TongcumpouC.: Palm Oil Removal from Fabric Using Microemulsion-Based Formulations. J. Surfactants Deterg.13 (2010) 485–495. 10.1007/s11743-010-1219-2Search in Google Scholar
14. Blagojevic, S. N., Blagojevic, S. M. and Pejic, N. D.: Performance and Efficiency of Anionic Dishwashing Liquids with Amphoteric and Nonionic Surfactants. J. Surfactants Deterg.19 (2016) 363–372. 10.1007/s11743-010-1219-2Search in Google Scholar
15. Uner, A. and Yilmaz, F.: Efficiency of Laundry Polymers Containing Liquid Detergents for Hard Surface Cleaning. J. Surfactants Deterg.18 (2014) 213–224. 10.1007/s11743-014-1634-xSearch in Google Scholar
16. Amaral, M. H., das Neves, J., Oliveira, A. Z. and Bahia, M. F.: Foamability of Detergent Solutions Prepared with Different Types of Surfactants and Waters. J. Surfactants Deterg.11 (2008) 275–278. 10.1007/s11743-008-1088-0Search in Google Scholar
17. Riba, J-R. and Esteban, B.: A simple laboratory experiment to measure the surface tension of a liquid in contact with air. Eur. J. Phys.35 (2014) 1–11. 10.1088/0143-0807/35/5/055003Search in Google Scholar
18. Lee, B-B., Ravindra, P. and Chan, E-S: New drop weight analysis for surface tension determination of liquids. Colloids Surf., A332 (2009) 112–120. 10.1016/j.colsurfa.2008.09.003Search in Google Scholar
19. Ponnusamy, T., Dubal, S. A. and Momin, S. A.: Studies in Detergency: Influence of Different Factors for Removing Motor Oil Stain from the Cotton Fabric. J. Dispersion Sci. Technol.29 (2008) 1123–1128. 10.1080/01932690701817842Search in Google Scholar
20. Tano, E. and Melhus, A.: Level of decontamination after washing textiles at 60°C or 70°C followed by tumble drying. Infect Ecol Epidemiol.4 (2014). 10.3402/iee.v4.24314Search in Google Scholar PubMed PubMed Central
21. Stapleton, K., Hill, K., Day, K., PerryJ. D. and Dean, J. R.: The potential impact of washing machines on laundry malodour generation. Lett Appl Microbiol.56 (2013) 299–306. 23350695 10.1111/lam.12050Search in Google Scholar PubMed
22. Thirunavukarasu, K., Edwinoliver, N. G., Anbarasan, S. Durai, Gowthaman, M. K., Iefuji, H. and Kamini, N. R.: Removal of triglyceride soil from fabrics by a novel lipase from Cryptococcus sp. S-2. Process Biochem.43 (2008) 701–706. 10.1016/j.procbio.2008.02.011Search in Google Scholar
23. Hemachander, C. and Puvanakrishnan, R.: Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochem.35 (2000) 809–814. 10.1016/S0032-9592(99)00140-5Search in Google Scholar
24. van Roosmalen, M. J. E., Woerlee, G. F. and Witkamp, G. J.: Surfactants for particulate soil removal in dry-cleaning with high-pressure carbon dioxide. J. Supercrit. Fluids.30 (2004) 97–109. 10.1016/S0896-8446(03)00115-3Search in Google Scholar
25. Shahidi, S., Ghoranneviss, M., Moazzenchi, B., Rashidi, A. and Mirjalili, M.: Investigation of Antibacterial Activity on Cotton Fabrics with Cold Plasma in the Presence of a Magnetic Field. Plasma Processes Polym.4 (2007) 1098–1103. 10.1002/ppap.200732412Search in Google Scholar
26. Sett, S., Sahu, R., Pelot, D. D. and Yarin, A. L.: Enhanced Foamability of Sodium Dodecyl Sulfate Surfactant Mixed with Superspreader Trisiloxane-(poly)ethoxylate. Langmuir.30 (2014) 14765–14775. 25409539 10.1021/la503542bSearch in Google Scholar PubMed
27. Ware, A. M., Waghmare, J. T. and Momin, S. A.: Alkylpolyglycoside: Carbohydrate Based Surfactant. J. Dispersion Sci. Technol.28 (2007) 437–444. 10.1080/01932690601107807Search in Google Scholar
28. Theander, K. and Pugh, R. J.: Synergism and Foaming Properties in Mixed Nonionic/fatty Acid Soap Surfactant Systems. J. Colloid Interface Sci.267 (2003) 9–17. 10.1016/S0021-9797(03)00482-XSearch in Google Scholar
29. Wang, R., Li, Y. and Li, Y.: Interaction Between Cationic and Anionic Surfactants: Detergency and Foaming Properties of Mixed Systems. J. Surfactants Deterg.17 (2014) 881–888. 10.1007/s11743-014-1605-2Search in Google Scholar
30. Meshram, S. U., Khandekar, U. R., Mane, S. M. and Mohan, A.: Novel Route of Producing Zeolite A Resin for Quality-Improved Detergents. J. Surfactants Deterg.18 (2014) 259–266. 10.1007/s11743-014-1656-4Search in Google Scholar
31. Savarino, P., Montoneri, E., Musso, G. and Boffa, V.: Biosurfactants from Urban Wastes for Detergent Formulation: Surface Activity and Washing Performance. J. Surfactants Deterg.13 (2009) 59–68. 10.1007/s11743-009-1133-7Search in Google Scholar
32. Jadidi, N., Adib, B. and Malihi, F. B.: Synergism and Performance Optimization in Liquid Detergents Containing Binary Mixtures of Anionic–Nonionic and Anionic–Cationic Surfactants. J. Surfactants Deterg.16 (2012) 115–121. 10.1007/s11743-012-1371-ySearch in Google Scholar
33. Sanova, L. A. and Lisitsyn, A. N.: Simulation of foaming ability, multiplicity, and foam stability of shampoo. Russ. J. Appl. Chem.85 (2012) 898–906. 10.1134/S1070427212050110Search in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Short Communication
- Clouding Behaviour of Polysorbate 80: Effect of Additives
- Application
- Effect of Molecular Weight of Polymers on the Properties of Delicate Facial Foams
- Food-grade Water in Oil Microemulsion as a Potential Approach for Tea Polyphenols Encapsulation
- Physical Chemistry
- Aldehydes as Additives in AOT-based Microemulsions: Influence on the Electrical Percolation
- Study on a Ternary Surfactant System of Disodium Hexadecyl Diphenyl Ether Disulfonate, Dodecyldimethyl Hydroxyethyl Ammonium Chloride and Fatty Alcohol Polyoxyethylene Ether
- Synergistic Effect of Saponin and Rhamnolipid Biosurfactants Systems on Foam Behavior
- Ultrasonic Studies of Cu(II) Soaps Derived from Mustard and Soya Bean Oils
- Synthesis
- Synthesis, Properties and Application of Novel Ethylenediamine Triacetate Chelating Surfactants
- Synthesis of a Gemini Betaine Surfactant and Its Properties as Foam Drainage Agent
- Synthesis and Evaluation of a New Trianionic Surfactant for the Removal of Pb(II) by Flotation Method
- Environmental Chemistry
- Destabilization and Separation of Gas Condensate from Wastewater using Different Surfactant Demulsifiers
- Detergent Ingredients
- Foaming and Cleaning Performance Comparison of Liquid Detergent Formulations using Mixtures of Anionic and Nonionic Surfactants
Articles in the same Issue
- Contents/Inhalt
- Contents
- Short Communication
- Clouding Behaviour of Polysorbate 80: Effect of Additives
- Application
- Effect of Molecular Weight of Polymers on the Properties of Delicate Facial Foams
- Food-grade Water in Oil Microemulsion as a Potential Approach for Tea Polyphenols Encapsulation
- Physical Chemistry
- Aldehydes as Additives in AOT-based Microemulsions: Influence on the Electrical Percolation
- Study on a Ternary Surfactant System of Disodium Hexadecyl Diphenyl Ether Disulfonate, Dodecyldimethyl Hydroxyethyl Ammonium Chloride and Fatty Alcohol Polyoxyethylene Ether
- Synergistic Effect of Saponin and Rhamnolipid Biosurfactants Systems on Foam Behavior
- Ultrasonic Studies of Cu(II) Soaps Derived from Mustard and Soya Bean Oils
- Synthesis
- Synthesis, Properties and Application of Novel Ethylenediamine Triacetate Chelating Surfactants
- Synthesis of a Gemini Betaine Surfactant and Its Properties as Foam Drainage Agent
- Synthesis and Evaluation of a New Trianionic Surfactant for the Removal of Pb(II) by Flotation Method
- Environmental Chemistry
- Destabilization and Separation of Gas Condensate from Wastewater using Different Surfactant Demulsifiers
- Detergent Ingredients
- Foaming and Cleaning Performance Comparison of Liquid Detergent Formulations using Mixtures of Anionic and Nonionic Surfactants