Effect of Additives on the Phase Behavior of SDS/CTAB/H2O Systems
-
Hongni Teng
, Wenxiu Liu , Yong Chen , Xiuyun Wang and Hao Zhang
Abstract
The effect of additives on the phase behavior of aqueous solutions of sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) has been studied in detail for extended applications. The results showed that both the widths of an anionic two-phase aqueous system (ATPSa) region with SDS in excess and a aqueous cationic two-phase system (ATPSc) region with CTAB in excess are very narrow, less than 1% in absence of any additives. However, phase regions of ATPS move toward the corresponding isotropic single phase regions and become wider in the presence of inorganic additives such as NaBr in the aqueous surfactant solutions. This is because the addition of inorganic salt increases the concentration of inorganic counter-ions and therefore the electrostatic interactions between counter-ions and surfactant aggregates. Meanwhile, the organic salts, sodium salicylate and tetrabutylammonium bromide, have been found to have a greater capacity to expand the range of ATPS because the electrostatic interactions between organic ions and aggregates were adjustable through the deformation of the electron cloud of organic ions. Organic additives with different properties can effectively extend the range of either ATPSc or ATPSa. Wherein, sodium salicylate can expand ATPSc efficiently and tetrabutylammonium bromide can expand ATPSa significantly.
Kurzfassung
Die Wirkung von Additiven auf das Phasenverhalten von wässrigen Lösungen aus Natriumdodecylsulfat (SDS) und Cetyltrimethylammoniumbromid (CTAB) wurde im Detail für erweiterte Anwendungen untersucht. Die Ergebnisse zeigten, dass sowohl die wässrige anionische Zweiphasenregion (ATPSa) mit SDS im Überschuss als auch die wässrige kationische Zweiphasenregion (ATPSc) mit überschüssigem CTAB (weniger als 1% in Abwesenheit irgendwelcher Additive) sehr eng sind. Die Phasenbereiche von ATPS bewegen sich jedoch auf die entsprechenden isotropen Einzelphasenregionen zu und werden in Gegenwart von anorganischen Additiven wie NaBr in den wässrigen Tensidlösungen breiter. Dies liegt daran, dass die Zugabe von anorganischem Salz die Konzentration von anorganischen Gegenionen und daher die elektrostatischen Wechselwirkungen zwischen Gegenionen und Tensidaggregaten erhöht. Mittlerweile wurde gefunden, dass die organischen Salze, Natriumsalicylat und Tetrabutylammoniumbromid, eine größere Kapazität haben, den Bereich von ATPS zu erweitern, da die elektrostatischen Wechselwirkungen zwischen organischen Ionen und Aggregaten durch die Verformung der Elektronenwolke von organischen Ionen einstellbar waren. Organische Additive mit unterschiedlichen Eigenschaften können den Bereich entweder von ATPSc oder von ATPSa effektiv erweitern. Dabei kann Natriumsalicylat ATPSc effizient und Tetrabutylammoniumbromid ATPSa signifikant expandieren.
References
1. Holland, P. M. and Rubingh, D. N.: Nonideal multicomponent mixed micelle model, J. Phys. Chem.87 (1983) 1984–1990. 10.1021/j100234a030Search in Google Scholar
2. Graciaa, A., Ghoulam, M. Ben, Marion, G. and Lachaise, J.: Critical concentrations and compositions of mixed micelles of sodium dodecylbenzenesulfonate, tetradecyltrimethylammonium bromide and polyoxyethylene octylphenols, J. Phys. Chem.93 (1989) 4167–4173. 10.1021/j100347a055Search in Google Scholar
3. Góralczyk, D.: Thermodynamic characteristics and composition of anionic-cationic adsorption films, J. Colloid Interface Sci.77 (1980) 68–75. 10.1016/0021-9797(80)90416-6Search in Google Scholar
4. Góralczyk, D.: Effect of inorganic electrolyte type on anionic–cationic adsorption films, Colloid surface11 (1984) 287–301. 10.1016/0166-6622(84)80285-1Search in Google Scholar
5. Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K. and Moulik, S. P.: Physico-chemical studies on mixed oppositely charged surfactants: Their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface, Colloid surface264 (2005) 106–113. 10.1016/j.colsurfa.2005.02.011Search in Google Scholar
6. Tah, B., Pal, P., Mahato, M. and Talapatra, G. B.: Aggregation behavior of SDS/CTAB catanionic surfactant mixture in aqueous solution and at the air/water interface, J. Phys. Chem.115 (2011) 8493–8499. 21675762 10.1021/jp202578sSearch in Google Scholar PubMed
7. Sohrabi, B., Gharibi, H., Tajik, B., Javadian, S. and Hashemianzadeh, M.: Molecular interactions of cationic and anionic surfactants in mixed monolayers and aggregates, J. Phys. Chem.112 (2008) 14869–14876. 18956836 10.1021/jp803105nSearch in Google Scholar PubMed
8. Treiner, C., Nortz, M. and Vaution, C.: Micellar solubilization in strongly interacting binary surfactant systems, langmuir6 (1990) 1211–1216.10.1021/la00097a002Search in Google Scholar
9. Kume, G., Gallotti, M. and Nunes, G.: Review on anionic/cationic surfactant mixtures, J. Surfactants Deterg.11 (2008) 1–11. 10.1007/s11743-007-1047-1Search in Google Scholar
10. Kabir-ud-Din, Shafi, M., Bhat, P. A. and Dar, A. A.: Solubilization capabilities of mixtures of cationic Gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons, J. Hazard. Mater.167 (2009) 575–581. 19232468 10.1016/j.jhazmat.2009.01.022Search in Google Scholar PubMed
11. Karlsson, S., Friman, R., Backlund, S. and Eriksson, R.: A Comparative Study of Phase Behaviour in Aqueous Systems of Catanionic Surfactants and Ionic Surfactants with Organic Counterions, Tens. Surf. Det.41 (2004) 72–77. 10.3139/113.100210Search in Google Scholar
12. Diao, Z. Y., Li, L., Wang, Z. N., Lu, J. and Zhou, W.: Studies in the phase behavior of the microemulsions formed by mixed cationic and nonionic surfactants, COLLOID J+, 73 (2010): 626–634. 10.1134/S1061933X1105022XSearch in Google Scholar
13. Mao, M., Huang, J. B., Zhu, B. Y. and Ye, J. B.: The Transition from Vesicles to Micelles Induced by Octane in Aqueous Surfactant Two-Phase Systems, J. Phys. Chem.106 (2002) 219–225. 10.1021/jp0107255Search in Google Scholar
14. Fan, H. M., Li, B. C., Yan, Y., Huang, J. B. and Kang, W. L.: Phase behavior and microstructures in a mixture of anionic Gemini and cationic surfactants, Soft Matter25 (2014) 4506–4512. 24817411 10.1039/c4sm00098fSearch in Google Scholar PubMed
15. Shen, Y. W., Hoffmann, H., Jiang, L. H., Lin, H. T., Hao, J. C. and Yang, L.: Lamellar phase formation in catanionic mixtures of hydrogenated and fluorinated surfactants: a comparative study, Colloid Polym. Sci.292 (2014) 67–75. 10.1007/s00396-013-3040-8Search in Google Scholar
16. Villeneuve, M., Kaneshina, S., Imae, T. and Aratono, M.: Vesicle–Micelle Equilibrium of Anionic and Cationic Surfactant Mixture Studied by Surface Tension, Langmuir15 (1999) 2029–2036. 10.1021/la980925gSearch in Google Scholar
17. Herrington, K. L., Kaler, E. W., Miller, D. D., Zasadzinski, J. A. and Chiruvolu, S.: Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS), J. Phys. Chem.97 (1993) 13792–13802. 10.1021/j100153a058Search in Google Scholar
18. Kaler, E. W., Herrington, K. L., Murthy, A. K. and Zasadzinski, J. A. N.: Phase behavior and structures of mixtures of anionic and cationic surfactants, J. Phys. Chem.96 (1992) 6698–6707. 10.1021/j100195a033Search in Google Scholar
19. Yatcilla, M. T., Herrington, K. T., Brasher, L. L. and Kaler, E. W.: Phase Behavior of Aqueous Mixtures of Cetyltrimethylammonium Bromide (CTAB) and Sodium Octyl Sulfate (SOS), J. Phys. Chem.100 (1996) 5874–5879. 10.1021/jp952425rSearch in Google Scholar
20. Jiang, Y., Li, F. F., Luan, Y. X., Cao, W. T., Ji, X. Q., Zhao, L. X., Zhang, L. L. and Li, Z. H.: Formation of drug/surfactant catanionic vesicles and their application in sustained drug release, Int. J. Pharmaceut.436 (2012) 806–814. 22871561 10.1016/j.ijpharm.2012.07.053Search in Google Scholar PubMed
21. Teng, H. N., Li, N., Zhu, X. X. and Chen, Y.: Extraction Separation of BSA in Aqueous Two-Phase Systems of Anionic and Cationic Surfactant Mixtures, J. Disper. Sci. Tech.32 (2011) 828–833;. 10.1080/01932691.2010.488141Search in Google Scholar
22. Teng, H. N., Chen, L., Liu, H. L. and Hu, Y.: Study on the Phase Diagrams of Aqueous Two-Phase and Microstructure of Cationic-Anionic Mixed Surfactants, Acta Chim. Sinica59 (2001) 383–387. 10.3321/j.issn:0567-7351.2001.03.015Search in Google Scholar
23. Teng, H. N., Wang, F., Sun, M. J. and Zhang, S.: Influence of Salts on Aqueous Two-phase System of Cationic and Anionic surfactant Aqueous Mixture, Acta Chim. Sinica63 (2005) 1570–1574. 10.3321/j.issn:0567-7351.2005.17.005Search in Google Scholar
24. Teng, H. N., Hu, L. S., Chen, Y., Yang, C. Y. and Du, T. T.: Effects of Surfactant Carbon-Chain Length on the Phase Behaviors of ATPS, J. Disper. Sci. Tech.32 (2011) 1363–1366. 10.1080/01932691.2010.505881Search in Google Scholar
25. Teng, H. N., Hu, L. S., Chen, Y. and Du, T. T.: Research on the Micellar Dispersal Behaviors in Mixed Surfactant System by Cyclic Voltammetry, J. Disper. Sci. Tech.34 (2013) 1161–1164. 10.1080/01932691.2012.680829Search in Google Scholar
26. Yin, Y. J.: (1985) Handbook of College Chemistry; Jinan: Publishing House of Science and Technology of Shangdong.Search in Google Scholar
27. Friman, R., Backlund, S., Høgnesen, E. and Austad, T.: Microemulsions Formed by a Catanionic Surfactant or by an Ionic Surfactant with an Organic Counterion, Tens. Surf. Det.41 (2004): 190–194. 10.3139/113.100224Search in Google Scholar
28. Wattebled, L. and Laschewsky, A.: Effects of Organic Salt Additives on the Behavior of Dimeric (“Gemini”) Surfactants in Aqueous Solution, Langmuir23 (2007) 10044–10052. 17711316 10.1021/la701542kSearch in Google Scholar PubMed
29. Friman, R., Backlund, S., Teixeira, C. V. and Linden, M.: Vesicular Phase Behaviour in Ionic Surfactant Systems with Organic Counter-ions, Tens. Surf. Det.43 (2006) 28–33. 10.3139/113.100297Search in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2017
- Physical Chemistry
- On the Influence of Intersurfactant H-Bonds on Foam Stability: A Study with Technical Grade Surfactants
- Phase Boundaries, Optical Refraction and Specific Electrical Conductivity Properties in Lyotropic Micellar L1 Phase: Bicomponent Amphiphilic (DDTMABr + HDTMABr) + Water System
- Effect of Additives on the Phase Behavior of SDS/CTAB/H2O Systems
- Influence of Micellar Media on Extraction of Copper(II) from Sulphate and Chloride Solutions using an N,N′-Bis(salicylideneaminoethyl)amine Multidentate Schiff Base
- Environmental Chemistry
- Biodegradation of Oxyethylated Fatty Alcohols by Bacterium Pseudomonas alcaligenes; AE Biodegradation by Pseudomonas alcaligenes
- Influence of Organic Loading Rates (OLR) in Treatment of Pulp and Paper Mill Wastewater with Hybrid Upflow Anaerobic Sludge Blanket Reactor (HUASBR) with Hexagonal Polypropylene Inert Material
- Application
- Linear-Dendritic Block Copolymer Containing Fluorescent Groups: An Effective and Environmentally Benign Inhibitor for Calcium Carbonate
- Performance Evaluation and Application of the Surfactant Combinations showing Ultra-low Oil-Water Interfacial Tensions
- Synthesis
- Organosilicone Modified Styrene-Acrylic Latex: Preparation and Crude Oil Dehydration
- Synthesis and Characterization of Dicationic Gemini Surfactant Micelles and their Effect on the Rate of Ninhydrin–Copper-Peptide Complex Reaction
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2017
- Physical Chemistry
- On the Influence of Intersurfactant H-Bonds on Foam Stability: A Study with Technical Grade Surfactants
- Phase Boundaries, Optical Refraction and Specific Electrical Conductivity Properties in Lyotropic Micellar L1 Phase: Bicomponent Amphiphilic (DDTMABr + HDTMABr) + Water System
- Effect of Additives on the Phase Behavior of SDS/CTAB/H2O Systems
- Influence of Micellar Media on Extraction of Copper(II) from Sulphate and Chloride Solutions using an N,N′-Bis(salicylideneaminoethyl)amine Multidentate Schiff Base
- Environmental Chemistry
- Biodegradation of Oxyethylated Fatty Alcohols by Bacterium Pseudomonas alcaligenes; AE Biodegradation by Pseudomonas alcaligenes
- Influence of Organic Loading Rates (OLR) in Treatment of Pulp and Paper Mill Wastewater with Hybrid Upflow Anaerobic Sludge Blanket Reactor (HUASBR) with Hexagonal Polypropylene Inert Material
- Application
- Linear-Dendritic Block Copolymer Containing Fluorescent Groups: An Effective and Environmentally Benign Inhibitor for Calcium Carbonate
- Performance Evaluation and Application of the Surfactant Combinations showing Ultra-low Oil-Water Interfacial Tensions
- Synthesis
- Organosilicone Modified Styrene-Acrylic Latex: Preparation and Crude Oil Dehydration
- Synthesis and Characterization of Dicationic Gemini Surfactant Micelles and their Effect on the Rate of Ninhydrin–Copper-Peptide Complex Reaction