Startseite A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants

  • Hasnia Reffas , Tayeb Benabdallah und Mohammed Hadj youcef
Veröffentlicht/Copyright: 3. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cloud point extraction (CPE) experiments were carried out for separation of copper(II) from aqueous saline sulphate medium with the Schiff's base chelating extractant, N,N′-bis(salicylidene)ethylenediamine (H2SALEN), using the polyethoxylated alcohol Tergitol 15-S-7 as a biodegradable non-ionic surfactant. The obtained results were compared with those previously obtained in presence of Triton X-100. The effects of the main experimental parameters such as pH, extractant concentration, and non-ionic surfactant concentration on the cloud point extraction behavior of copper(II) with H2SALEN were studied and discussed. The use of both systems namely, Triton X-100/H2SALEN/Na2SO4 and Tergitol 15-S-7/H2SALEN/Na2SO4, led to very good extraction efficiency and concentrating ability for Cu(II) pollutant. Indeed, nearly 100 % extraction efficiency with a minimal volume fraction of the surfactant-rich phase, ϕs, was achieved at pH 7.25 and 8 in the systems Tergitol 15-S-7/H2SALEN/Na2SO4 and Triton X-100/H2SALEN/Na2SO4, respectively. The Tergitol 15-S-7/H2SALEN/Na2SO4 extraction system was found to be more efficient for Cu(II) removal compared to Triton X-100/H2SALEN/Na2SO4 system, providing higher concentration factor, Cf, and a lesser separation temperature, Ts. The analysis of the extraction data revealed that the cloud point process of copper proceeds via a cation exchange mechanism. The stoichiometry of the extracted complexes was ascertained by the Yoe-Jones mole ratio method having a composition of 1 : 1 [Cu: H2SALEN].

Kurzfassung

Zur Trennung von Kupfer (II) aus wässrigem, salzigem und sulfathaltigem Medium wurden Trübungspunktextraktionsexperimente (CPE-Experimente) mit dem Schiff'sche-Base-Chelat-Extraktionsmittel N,N′-Bis-(salicyliden)ethylendiamin (H2SALEN) unter Verwendung des polyethoxylierten Alkohols Tergitol 15-S-7 als biologisch abbaubares nichtionisches Tensid durchgeführt. Die erhaltenen Ergebnisse wurden mit denen, die zuvor in Gegenwart von Triton X-100 erhalten wurden, verglichen. Die Auswirkungen der wichtigsten experimentellen Parameter wie pH-Wert, Extraktionsmittelkonzentration und Konzentration des nichtionischen Tensids auf das Trübungspunkt-Extraktionsverhalten von Kupfer (II) mit H2SALEN wurden untersucht und diskutiert. Die beiden Systeme, nämlich Triton X-100/H2SALEN/Na2SO4 und Tergitol 15-S-7/H2SALEN/Na2SO4, zeigten eine sehr gute Extraktionsleistung und Aufkonzentrierung des Schadstoffs Cu(II). Tatsächlich wurde bei den Systemen Tergitol 15-S-7/H2SALEN/Na2SO4 und Triton X-100/H2SALEN/Na2SO4 eine nahezu 100 %ige Extraktionsleistung mit einem minimalen Volumenanteil der oberflächenaktiven Phase ϕs bei den pH-Werten 7,25 und 8 erreicht. Das Extraktionssystem Tergitol 15-S-7/H2SALEN/Na2SO4, erwies sich für die Cu(II)-Entfernung im Vergleich zum Triton X-100/H2SALEN/Na2SO4-System als effizienter. Es besitzt einen höheren Konzentrationsfaktor Cf und eine geringere Trenntemperatur, Ts. Die Analyse der Extraktionsdaten ergab, dass die Trübungsextraktion bei Kupfer über einen Kationenaustauschmechanismus verläuft. Die Stöchiometrie der extrahierten Komplexe hatten eine Zusammensetzung von 1: 1 [Cu: H2SALEN], was durch die Yoe-Jones-Molverhältnismethode bestätigt wurde.


* Correspondence address, Dr. Hasnia Reffas, Laboratoire de Chimie et d'Electrochimie des Complexes Métalliques (LCECM), Département de Chimie Organique industrielle, Faculté de Chimie, Université des Sciences et de la Technologie d'Oran-Mohamed Boudiaf (USTOMB), BP-1505 EL-M'naouer, Oran, Algérie, E-Mail: ,

Dr. Hasnia Reffas received her M. Sc. and Ph. D. degrees from the University of the Sciences and Technology of Oran. She has published more than 10 publications. Her research interest is in the applied chemistry of the metallic complexes. Now, she is a lecturer at the Faculty of Chemistry, USTOMB, Oran, Algeria. She is also member in different research projects in the USTOMB.

Prof. Tayeb Benabdallah received his bachelor's degree in organic chemistry in 1982 and his Ph. D. in organic chemistry in 1987 from the University of AIX-Marseille II, France, under the supervision of Professor R. Guglielmetti. He has guided more than 15 M. Sc. and Ph. D. students and published more than 30 articles. At present, he is a professor at the Faculty of Chemistry, University of the Sciences and Technology of Oran, Algeria. He is also the director of the Laboratory of the Chemistry and Electrochemistry of Metallic Complexes (LCECM).

Dr. Mohammed Hadj Youcef is a lecturer in Faculty of Chemistry at the University of the Sciences and Technology of Oran. He received his M. Sc. and Ph. D. degrees from the same University. He has authored about 14 research papers and supervised 9 masters’ students. He is also member in different research projects in the USTOMB. His research focus is in the liquid-liquid extraction of metallic complexes species from aqueous and micellar solutions.


References

1. Scamehorn J. F. , ChristianS. D. and RexT.: In Surfactant-Based Separation Processes; Scamehorn, J. F.Harwell, J. H. Eds. Marcel Dekker, Inc.: New York (1989).Suche in Google Scholar

2. Espinola A. and OliveiraL. F. M.: Flow Electrolysis for Decontaminating Plate Industries Waste Water; Extr. and Proc. for Treat. and Minim. of Waste, TMS: San Francisco, USA1994).Suche in Google Scholar

3. Réguillon A. F. , DrayeM., LebuzitG., ThomasS., CoteG. and GuyA.: Cloud point extraction: An alternative to traditional liquid-liquid extraction for lantanides(III) separation; Talanta63 (2004) 803806. 10.1016/j.talanta.2003.12.033Suche in Google Scholar

4. Ohashi A. , TsugushiA., ImuraH. and OhashiK.: Cloud point extraction behaviour of Aluminum (III) with 2-methyl-8-quinolinol and 3, 5-dichlorophenol; Anal. Sci.20 (2004) 10911093. 10.2116/analsci.20.1091Suche in Google Scholar

5. Afkami A. , BahramM. and GholamiS. Z.: Micelle-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine; Anal. Biochem.336 (2005) 295299. 10.1016/j.ab.2004.10.026Suche in Google Scholar

6. Watanabe H. and TanakaH. A.: non-ionic surfactant as a new solvent for liquid extraction of Zinc (II) with 1-(2-pyridylazol)-2-naphlhol; Talanta25 (1978) 585589. 10.1016/0039-9140(78)80151-9Suche in Google Scholar

7. McIntire G. L. : Micelles in analytical chemistry; Crit. Rev. Anal. Chem.21 (1990) 257278. 10.1080/10408349008051631Suche in Google Scholar

8. Stalikas C. D. : Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis; Trends Anal. Chem.21 (2002) 343355. 10.1016/S0165-9936(02)00502-2Suche in Google Scholar

9. Hadj Youcef M. , BenabdallahT. and IliktiH.: Study on copper(II) extraction from sulphate medium via cloud- point extraction with N-salicylideneaniline ligand in presence of non-ionic surfactant; Can. J. Anal. Sci. Spectrosc.51 (2006) 267278.Suche in Google Scholar

10. Luconi M. O. , Fernanda SilvaM., OlsinaR. A. and FernandezL. P.: Cloud point extraction of lead in saliva via use of nonionic PONPE 7.5 without added chelating agents; Talanta51 (2000) 123129. 10.1016/S0039-9140(99)00252-0Suche in Google Scholar

11. Manzoori J. L. and Karim-NezhadG.: Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination; Anal. Chim. Acta521 (2004) 173177. 10.1016/j.aca.2004.06.049Suche in Google Scholar

12. Chen J. and TeoK. C.: Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction; Anal. Chim. Acta434 (2001) 325330. 10.1016/S0003-2670(01)00849-2Suche in Google Scholar

13. Doroschuck V. O. , LelyushokS. O., IshchenkoV. B. and KulichenkoS. A.: Flame atomic absorption determination of manganese (II) in natural water after cloud point extraction; Talanta64 (2004) 853856. 10.1016/j.talanta.2004.03.056Suche in Google Scholar

14. Shimerani F. , AbkenarS. D. and JamaliM. R.: Determination of cadmium(II), copper(II) and zinc (II) in water samples by flame atomic absorption spectrometry after cloud point extraction; Indian. J. Chem. Sect (A)44 (2005) 12111214.Suche in Google Scholar

15. Ohashi A. , HashimotoT., ImuraH. and OhashiK.: Cloud point extraction equilibrium of lanthanum(III), europium(III) and lutetium(III) using di(2-ethylhexyl)phosphoric acid and Triton X-100; Talanta73 (2007) 893898. 10.1016/j.talanta.2007.05.012Suche in Google Scholar

16. Mustafina A. , ElistratovaJ., BurilovA., KnyazevaI., ZairovI. R., AmirovR., SolovievaS. and KonovalovA.: Cloud point extraction of lanthanide(III) ions via use of Triton X-100 without and with water-soluble calixarenes as added chelating agents; Talanta68 (2006) 863868. 10.1016/j.talanta.2005.06.011Suche in Google Scholar

17. Shemirani F. , AbkenarS. D., MirroshandelA. A., NiasariM. S. and KozaniaR. R.: Preconcentration and speciation of chromium in water samples by atomic absorption spectrometry after cloud-point extraction; Anal. Sci.19 (2003) 14531456. 10.2116/analsci.19.1453Suche in Google Scholar

18. Shemirani F. , JamaliM. R., KozaniR. R. and Salavati-NiasariM.: Cloud point extraction and preconcentration for the determination of Cu and Ni in natural water by flame atomic absorption spectrometry; Sep. Sci. Technol.41 (2006) 30653077. 10.1080/01496390600785970Suche in Google Scholar

19. Baghban N. , ShabaniA. M. H., DadfarniaS. and JafariA. A.: Flame atomic absorption spectrometric determination of trace amounts of cobalt; J. Braz. Chem. Soc.20 (2009) 832838. 10.1590/S0103-50532009000500005Suche in Google Scholar

20. Cimmerman Z. , GalicN. and BosnerB.: The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents; Anal. Chim. Acta.343 (1997) 145153. 10.1016/S0003-2670(96)00587-9Suche in Google Scholar

21. Hadj Youcef M. , BarkatD. and BenabdallahT.: behaviour study of some bidentate o-hydroxy Schiff base extractants in the removal of copper(II) by solvent extraction technique; J. Saudi Chem. Soc.10 (2006) 1520.Suche in Google Scholar

22. Reffas H. , BenabdallahT. and HadjyoucefM.: Removal of copper(II) from a concentrated sulphate medium by cloud point extraction using an N,N′-Bis(salicylaldehyde)Ethylenediimine di-Schiff base chelating ligand; J. Surfact. Deterg.17 (2014) 2735. 10.1007/s11743-013-1501-1Suche in Google Scholar

23. Akita S. and TakeuchiH.: Equilibrium distribution of aromatic compounds between aqueous solution and coacervate of non-ionic surfactants; Sep. Sci. Technol.31 (1996) 401412. 10.1080/01496399608000703Suche in Google Scholar

24. Aggett J. and RichardsonR. A.: Solvent extraction of copper(II) by Schiff's bases; Anal. Chim. Acta.50 (1970) 269275. 10.1016/0003-2670(70)80066-6Suche in Google Scholar

25. Reffas H. , BenabdallahT., HadjyoucefM. and IliktiH.: Study on cloud point extraction of copper(II) from an aqueous sulfate medium with N,N′-bis(salicylideneaminoethyl)amine polydentate Schiff base into a nonionic surfactant phase; J. Chem. Eng. Data55 (2010) 912918. 10.1021/je900522gSuche in Google Scholar

26. Reffas H. : Doctoral thesis in Sciences, USTO-MB, Oran, Algeria (2015).27.Suche in Google Scholar

27. Schott H. , AlanE. R. and HansK.: Effect of inorganic Additives on Solutions of Nonionic Surfactants; J. Colloid Int. Sci.98 (1984) 196201. 10.1016/0021-9797(84)90495-8Suche in Google Scholar

28. Tang A. N. , JiangD. O. and YanX. P.: Cloud point extraction preconcentration for capillary electrophoresis of metal ions; Anal. Chim. Acta.507 (2004) 199204. 10.1016/j.aca.2003.11.030Suche in Google Scholar

29. Liang P. and YangJ.: Cloud point extraction preconcentration and spectrophotometric determination of copper(II) in food and water samples using amino acids as the complexing agent; J. Food Comp. Analysis23 (2010) 9599. 10.1016/j.jfca.2009.01.015Suche in Google Scholar

30. Shemirani F. , AbkenarS. D. and KhatouniA.: Determination of lead and copper in water samples by flame atomic absorption spectrometry after cloud point extraction; Bull. Korean Chem. Soc.25 (2004) 11331136. 10.5012/bkcs.2004.25.8.1133Suche in Google Scholar

31. Hoshino H. , SaitohT., TaketomiH., YotsuyanagiT., WatanabeH. and TachikawaK.: Micellar solubilization equilibria for some analytical reagents in aqueous non-ionic surfactant solutions; Anal. Chim. Acta147 (1983) 339345. 10.1016/0003-2670(83)80101-9Suche in Google Scholar

32. Beltran J. L. , CodonyR., GrandesM. and IzquierdoA.: Acid-base and distribution equilibria of 5,7-dichloro-2-methyl-8-hydroxyquinoline in Brij-35 micella media solutions; Talanta40 (1993) 157165. 10.1016/0039-9140(93)80316-JSuche in Google Scholar

33. Reffas H. , BenabdallahT., HadjyoucefM. and IliktiH.: Extraction of copper(II) from sulphate aqueous medium with N,N′-bis(2-hydroxy-1-naphtalideneaminoethyl)amine polydentate Schiff base in aqueous two phase phase micellar non-ionic surfactant; Tenside Surf. Det.46 (2009)361367. 10.3139/113.110043Suche in Google Scholar

34. Silva M. F. , FernandezL., OlsinaR. A. and StacchiolaD.: Cloud point extraction, preconcentration and spectrophotometric determination of erbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol; Anal. Chim. Acta.342 (1997) 229238. 10.1016/S0003-2670(96)00603-4Suche in Google Scholar

35. Ohashi A. , TsuguchiA., ImuraH. and OhashiK.: Synergistic Cloud Point Extraction Behavior of Aluminum(III) with 2-Methyl-8-quinolinol and 3,5-Dichlorophenol; Anal. Sci.20 (2004) 10911093. 10.2116/analsci.20.1091Suche in Google Scholar

36. Hinze W. L. : Annual Report No. 92–269, Wake Forest University, North Carolina (1992) p 36.Suche in Google Scholar

37. Horvath W. J. and HuieC. W.: Salting-out surfactant extraction of porphyrins and metalloporphyrin from aqueous non-ionic surfactant solutions; Talanta39 (1992) 487492. 10.1016/0039-9140(92)80169-ESuche in Google Scholar

38. Cordero B. M. , PavonJ. L. P., PintoC. G. and LaespadaM. E. F.: Cloud point methodology: A new approach for preconcentration and separation in hydrodynamic systems of analysis; Talanta40 (1993) 17031710. 10.1016/0039-9140(93)80087-8Suche in Google Scholar

39. Yoe J. H. and JonesJ. L.: Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3, 5-disulphonate; Ind. Eng. Chem. (Anal Ed). 16 (1944) 111115. 10.1021/i560126a015Suche in Google Scholar

40. Kulichenco S. A. , DoroschukV. O. and LelyoshokS. O.: The cloud point extraction of copper(II)with monocarboxylic acids into non-ionic surfactant phase; Talanta59 (2003) 767773. 10.1016/S0039-9140(02)00617-3Suche in Google Scholar

41. Citak D. and TuzenM.: A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry; Food and Chem Toxicol.48 (2010) 13991404. 10.1016/j.fct.2010.03.008Suche in Google Scholar

42. Satiroglu N. and ArpalC.: Cloud point extraction for determination of trace copper in water samples by flame atomic spectrometry; Microchem Acta162 (2008) 107112. 10.1007/s00604-007-0904-ySuche in Google Scholar

43. Lemos V. A. , SantosM. S., SantosM. J. S., VieiraD. R. and NovaesC. G.: Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction; Microchem Acta157 (2007) 215222. 10.1007/s00604-006-0652-4Suche in Google Scholar

44. Schramm L. L. , StasiukE. N. and MarangoniD. G.: Surfactants and their applications; Ann. Rep. Prog. Chem. Sect. (C)99 (2003) 348. 10.1039/B208499FSuche in Google Scholar

Received: 2016-05-28
Accepted: 2016-08-10
Published Online: 2017-03-03
Published in Print: 2017-03-15

© 2017, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110488/html
Button zum nach oben scrollen