Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
-
Xu Li
Abstract
Glycerol, derived from biodiesel production, is a renewable feedstock for the production of value-added chemicals. Herein, we report an investigation of the acetalization of glycerol with n-octanal by homogeneous acid catalysis in the absence of a solvent, using p-dodecylbenzenesulfonic acid, p-toluenesulfonic acid, and sulfuric acid, respectively, as catalysts. p-Dodecylbenzenesulfonic acid, a surfactant-type Brønsted acid, proved to be an excellent catalyst capable of efficiently promoting the reaction under solvent-free conditions, and the yields of glycerol acetals reached 99% under the optimal conditions. The distribution of five- and six-membered cyclic acetal regioisomers varied depending on the reaction time and temperature. Moreover, the amphiphilic properties of the products, with different ratios of five- to six-membered cyclic acetals, have been evaluated by surface tension measurements.
Kurzfassung
Das aus der Biodieselproduktion gewonnene Glycerin ist ein nachwachsender Rohstoff für die Herstellung von Chemikalien mit Zusatznutzen. In diesem Beitrag berichten wir über die Acetalisierung von Glycerol mit n-Octanal in einer homogenen und sauren Katalysereaktion unter Verwendung von p-Dodecylbenzenesulfonsäure, p-Toluolsulfonsäure und Schwefelsäure als Katalysatoren und bei Abwesenheit eines Lösemittels. p-Dodecylbenzenesulfonsäure, eine tensidische Brønstedtsäure erwies sich als ein ausgezeichneter Katalysator, der in der Lage ist, die Reaktion unter lösungsmittelfreien Bedingungen effizient zu beschleunigen. Die Ausbeuten an Glycerinacetalen erreichten unter optimalen Bedingungen 99%. Die Verteilung der fünf- und sechsgliedrigen cyclischen Acetalregioisomere variierte in Abhängigkeit von der Reaktionszeit und der Temperatur. Darüber hinaus wurden die amphiphilen Eigenschaften der Produkte mit unterschiedlichen Verhältnissen von fünf- bis sechsgliedrigen cyclischen Acetalen durch Oberflächenspannungsmessungen bewertet.
References
1. Avhad, M. R. and Marchetti, J. M.: A review on recent advancement in catalytic materials for biodiesel production, Renew. Sust. Energ. Rev.50 (2015) 696–718. 10.1016/j.rser.2015.05.038Suche in Google Scholar
2. Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N. and Kim, J.: Technologies for production of biodiesel focusing on green catalytic techniques: A review, Fuel Process Technol.90 (2009) 1502–1514. 10.1016/j.fuproc.2009.07.016Suche in Google Scholar
3. Shahid, E. M. and Jamal, Y.: Production of biodiesel: A technical review, Renew. Sust. Energ. Rev.15 (2011) 4732–4745. 10.1016/j.rser.2011.07.079Suche in Google Scholar
4. Narkhede, N., Singh, S. and Patel, A.: Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification, Green Chem.17 (2015) 89–107. 10.1039/C4GC01743ASuche in Google Scholar
5. Quispe, C. A. G., Coronado, C. J. R. and CarvalhoJr., J. A.: Glycerol: Production, consumption, prices, characterization and new trends in combustion, Renew. Sust. Energ. Rev.27 (2013) 475–493. 10.1016/j.rser.2013.06.017Suche in Google Scholar
6. Ardi, M. S., Aroua, M. K. and Hashim, N. A.: Progress, prospect and challenges in glycerol purification process: A review, Renew. Sust. Energ. Rev.42 (2015) 1164–1173. 10.1016/j.rser.2014.10.091Suche in Google Scholar
7. Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on 1, 10-phenanthroline promoted chromic acid oxidation of glycerol in aqueous media, Tenside Surf. Det.49 (2012) 370–375. 10.3139/113.110204Suche in Google Scholar
8. Basu, A., Ghosh, S. K., Saha, R., Nandi, R., Ghosh, T. and Saha, B.: Effect of Some Non Functional Surfactants and Electrolytes on the Hexavalent Chromium Reduction by Glycerol: A Mechanistic Study, Tenside Surf. Det.48 (2011) 453–458. 10.3139/113.110152Suche in Google Scholar
9. Ghosh, A., Datta, I., Ghatak, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium, Tenside Surf. Det.53 (2016) 332–346. 10.3139/113.110440Suche in Google Scholar
10. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Combination of best promoter and micellar catalyst for chromic acid oxidation of D-mannitol to mannose in aqueous media, Tenside Surf. Det.50 (2013) 249–258. 10.3139/113.110256Suche in Google Scholar
11. Painter, R. M., Pearson, D. M. and Waymouth, R. M.: Selective catalytic oxidation of glycerol to dihydroxyacetone, Angew. Chem. Int. Edit.49 (2010) 9456–9459. 10.1002/anie.201004063Suche in Google Scholar PubMed
12. Katryniok, B., Kimura, H., Skrzynska, E., Girardon, J. S., Fongarland, P., Capron, M., Ducoulombier, R., Mimura, N., Paul, S. and Dumeignil, F.: Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chem.13 (2011) 1960–1979. 10.1039/C1GC15320JSuche in Google Scholar
13. Ghosh, A., Saha, R., Mukherjee, K., Ghosh, S. K., Sar, P., Malik, S. and Saha, B.: Choice of suitable micellar catalyst for 2, 2′-bipyridine-promoted chromic acid oxidation of glycerol to glyceraldehyde in aqueous media at room temperature, Res. Chem. Intermed.41 (2015) 3057–3078. 10.1007/s11164-013-1415-6Suche in Google Scholar
14. Ghosh, S. K., Basu, A., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol, J. Coord. Chem.65 (2012) 1158–1177. 10.1080/00958972.2012.669035Suche in Google Scholar
15. Oh, J., Dash, S. and Lee, H.: Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia, Green Chem.13 (2011) 2004–2007. 10.1039/C1GC15263GSuche in Google Scholar
16. Priya, S. S., Bhanuchander, P., Kumar, V. P., Dumbre, D. K., Periasamy, S. R., Bhargava, S. K., Lakshmi Kantam, M. and Chary, K. V. R.: Platinum Supported on H-Mordenite: A Highly Efficient Catalyst for Selective Hydrogenolysis of Glycerol to 1,3-Propanediol, ACS Sustainable Chem. Eng.4 (2016) 1212–1222. 10.1021/acssuschemeng.5b01272Suche in Google Scholar
17. Isahak, W. N. R. W., Ramli, Z. A. C., Ismail, M. and Yarmo, M. A.: Highly Selective Glycerol Esterification over Silicotungstic Acid Nanoparticles on Ionic Liquid Catalyst, Ind. Eng. Chem. Res.53 (2014) 10285–10293. 10.1021/ie501110mSuche in Google Scholar
18. Singh, D., Patidar, P., Ganesh, A. and Mahajani, S.: Esterification of Oleic Acid with Glycerol in the Presence of Supported Zinc Oxide as Catalyst, Ind. Eng. Chem. Res.52 (2013) 14776–14786. 10.1021/ie401636vSuche in Google Scholar
19. Sutter, M., Silva, E. D., Duguet, N., Raoul, Y., Metay, E. and Lemaire, M.: Glycerol Ether Synthesis: A Bench Test for Green Chemistry Concepts and Technologies, Chem. Rev.115 (2015) 8609–8651. 10.1021/cr5004002Suche in Google Scholar PubMed
20. Vitiello, R., Tesser, R., Santacesaria, E. and Di Serio, M.: New Production Processes of Dichlorohydrins from Glycerol Using Acyl Chlorides as Catalysts or Reactants, Ind. Eng. Chem. Res.55 (2016) 1484–1490. 10.1021/acs.iecr.5b03765Suche in Google Scholar
21. Sayoud, N., Vigier, K. D., Cucu, T., De Meulenaer, B., Fan, Z. Y., Lai, J., Clacens, J. M., Liebens, A. and Jerome, F.: Homogeneously-acid catalyzed oligomerization of glycerol, Green Chem.17 (2015) 4307–4314. 10.1039/C5GC01020ASuche in Google Scholar
22. Pérez-Barrado, E., Pujol, M. C., Aguiló, M., Llorca, J., Cesteros, Y., Díaz, F., Pallarès, J., Marsal, L. F. and Salagre, P.: Influence of acid–base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols, Chem. Eng. J.264 (2015) 547–556. 10.1016/j.cej.2014.11.117Suche in Google Scholar
23. Martin, A. and Richter, M.: Oligomerization of glycerol – a critical review, Eur. J. Lipid Sci. Tech.113 (2011) 100–117. 10.1002/ejlt.201000386Suche in Google Scholar
24. Gandini, A., Lacerda, T. M., Carvalho, A. J. and Trovatti, E.: Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides, Chem. Rev.116 (2016) 1637–1669. 10.1021/acs.chemrev.5b00264Suche in Google Scholar PubMed
25. Faria, R. P. V., Pereira, C. S. M., Silva, V. M. T. M., Loureiro, J. M. and Rodrigues, A. E.: Glycerol Valorization as Biofuel: Thermodynamic and Kinetic Study of the Acetalization of Glycerol with Acetaldehyde, Ind. Eng. Chem. Res.52 (2013) 1538–1547. 10.1021/ie302935wSuche in Google Scholar
26. García, E., Laca, M., Pérez, E., Garrido, A. and Peinado, J.: New Class of Acetal Derived from Glycerin as a Biodiesel Fuel Component, Energ. Fuel.22 (2008) 4274–4280. 10.1021/ef800477mSuche in Google Scholar
27. Gadamsetti, S., Rajan, N. P., Rao, G. S. and Chary, K. V. R.: Acetalization of glycerol with acetone to bio fuel additives over supported molybdenum phosphate catalysts, J. Mol. Catal. A-Chem.410 (2015) 49–57. 10.1016/j.molcata.2015.09.006Suche in Google Scholar
28. Piasecki, A., Sokolowski, A., Burczyk, B., Gancarz, R. and Kotlewska, U.: Synthesis, surface properties, and hydrolysis of chemodegradable anionic surfactants: Diastereomerically pure sodium cis-and trans-(2-n-alkyl-1,3-dioxan-5-yl) sulfates, Langmuir13 (1997) 1434–1439. 10.1021/la960207zSuche in Google Scholar
29. Silva, P. H., Goncalves, V. L. and Mota, C. J.: Glycerol acetals as anti-freezing additives for biodiesel, Bioresource Technol.101 (2010) 6225–6229. 10.1016/j.biortech.2010.02.101Suche in Google Scholar PubMed
30. Moity, L., Benazzouz, A., Molinier, V., Nardello-Rataj, V., Elmkaddem, M. K., de Caro, P., Thiebaud-Roux, S., Gerbaud, V., Marion, P. and Aubry, J. M.: Glycerol acetals and ketals as bio-based solvents: positioning in Hansen and COSMO-RS spaces, volatility and stability towards hydrolysis and autoxidation, Green Chem.17 (2015) 1779–1792. 10.1039/C4GC02377CSuche in Google Scholar
31. Piasecki, A.: Alkoxyalkyl-substituted glycerol acetals: New hydrophobic intermediates for surfactant synthesis, J. Am. Oil. Chem. Soc.69 (1992) 639–642. 10.1007/BF02635802Suche in Google Scholar
32. Piasecki, A., Sokolowski, A., Burczyk, B. and Kotlewska, U.: Synthesis and surface properties of chemodegradable anionic surfactants: Sodium (2-n-alkyl-1,3-dioxan-5-yl) sulfates, J. Am. Oil. Chem. Soc.74 (1997) 33–37. 10.1007/s11746-997-0115-zSuche in Google Scholar
33. Zhang, Y. J., Dayoub, W., Chen, G. R. and Lemaire, M.: Environmentally benign metal triflate-catalyzed reductive cleavage of the C-O bond of acetals to ethers, Green Chem.13 (2011) 2737–2742. 10.1039/C1GC15636ESuche in Google Scholar
34. Burczyk, B., Piasecki, A. and Weclas, L.: Chemical structure and surface activity. 10. The effect of hydroxyl group configuration on the adsorption of 2-alkyl-4-(hydroxymethyl)-1, 3-dioxolanes and 2-alkyl-5-hydroxy-1, 3-dioxanes at the aqueous solution-air interface, J. Phys. Chem.89 (1985) 1032–1035. 10.1021/j100252a029Suche in Google Scholar
35. Piasecki, A., Burczyk, B., Sokolowski, A. and Kotlewska, U.: An Efficient Method for the Preparation of Pure Long-Chain Cis-and Trans-2-n-Alkyl-5-Hydroxy-1,3-Dioxanes, Synthetic Commun.26 (1996) 4145–4151. 10.1080/00397919608004651Suche in Google Scholar
36. Ruiz, V. R., Velty, A., Santos, L. L., Leyva-Perez, A., Sabater, M. J., Iborra, S. and Corma, A.: Gold catalysts and solid catalysts for biomass transformations: Valorization of glycerol and glycerol-water mixtures through formation of cyclic acetals, J. Catal.271 (2010) 351–357. 10.1016/j.jcat.2010.02.023Suche in Google Scholar
37. Woelfel, K. and Hartman, T. G.: Mass Spectrometry of the Acetal Derivatives of Selected Generally Recognized as Safe Listed Aldehydes with Ethanol, 1,2-Propylene Glycol and Glycerol, in: Mussinan, C. J. and Morello, M. J. (Ed.), Flavor Analysis, ACS Symposium Series, American Chemical Society (1998) 705. 10.1021/bk-1998-0705.ch017Suche in Google Scholar
38. Baile, M., Chou, Y. J. and Saam, J. C.: Direct polyesterifcation in aqueous emulsion, Polym. Bull.23 (1990) 251–257. 10.1007/BF01032438Suche in Google Scholar
39. Manabe, K., Iimura, S., Sun, X.-M. and Kobayashi, S.: Dehydration Reactions in Water. Brønsted Acid–Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in Water, J. Am. Chem. Soc.124 (2002) 11971–11978. 10.1021/ja026241jSuche in Google Scholar PubMed
40. Manabe, K., Sun, X.-M. and Kobayashi, S.: Dehydration Reactions in Water. Surfactant-Type Brønsted Acid-Catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System, J. Am. Chem. Soc.123 (2001) 10101–10102. 10.1021/ja016338qSuche in Google Scholar PubMed
41. Kobayashi, S., Hirano, K. and Sugiura, M.: α-Aminoallylation of aldehydes in aqueous ammonia, Chem. Commun. (2005), 104–106. 10.1039/B415264FSuche in Google Scholar PubMed
42. Jing, L., Li, X. J., Han, Y. C. and Chu, Y.: The esterification in cyclohexane/DBSA/water microemulsion system, Colloid Surf. A-Physicochem. Eng. Asp.326 (2008) 37–41. 10.1016/j.colsurfa.2008.05.008Suche in Google Scholar
43. Song, K., Chu, Y., Dong, L., Song, J. and Wang, D.: Etherification in cyclohexane/DBSA/water microemulsion system, J. Mol. Catal. A-Chem.282 (2008) 144–148. 10.1016/j.molcata.2007.12.003Suche in Google Scholar
44. Kolvari, E., Zolfigol, M. A. and Peiravi, M.: Green synthesis of quinoxaline derivatives using p-dodecylbenzensulfonic acid as a surfactant-type Bronsted acid catalyst in water, Green Chem. Lett. Rev.5 (2012) 155–159. 10.1080/17518253.2011.606849Suche in Google Scholar
45. Movassagh, B. and Alapour, S.: P-Dodecylbenzenesulfonic Acid: A Highly Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates in Aqueous Media, Heteroat. Chem.24 (2013) 174–178. 10.1002/hc.21079Suche in Google Scholar
46. Gaudin, P., Jacquot, R., Marion, P., Pouilloux, Y. and Jerome, F.: Acid-catalyzed etherification of glycerol with long-alkyl-chain alcohols, ChemSusChem4 (2011) 719–22. 10.1002/cssc.201100129Suche in Google Scholar PubMed
47. Alegría, A. and Cuellar, J.: Esterification of oleic acid for biodiesel production catalyzed by 4-dodecylbenzenesulfonic acid, Appl. Catal. B-Environ.179 (2015) 530–541. 10.1016/j.apcatb.2015.05.057Suche in Google Scholar
48. Alegría, A., Arriba, Á. L. F. d., Morán, J. R. and Cuellar, J.: Biodiesel production using 4-dodecylbenzenesulfonic acid as catalyst, Appl. Catal. B-Environ.160–161 (2014) 743–756. 10.1016/j.apcatb.2014.06.033Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener