Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
-
Tao Wang
Abstract
Microcapsules with modified polymethyl methacrylate (PMMA) as coating polymer and sodium sulfate decahydrate (Na2SO4 · 10H2O) as core materials were prepared using the emulsion polymerization and solvent evaporation methods. Chemical composition and microscopic structure of the synthesized PMMA-AA/Na2SO4 · 10 H2O phase change materials (PCMs) microcapsules were confirmed by Fourier-transform infrared spectroscopy, polarizing optical microscopy (POM), scanning electron microscopy (SEM). The thermal properties were analyzed by differential scanning calorimetry (DSC) in detail. The results show that the microcapsules are uniform and approximately spherical with an average diameter of about 3.5 μm. The melting point of the microcapsule is 31.5°C and the fusion heat is 182.8 J/g. This demonstrated that the prepared PMMA-AA/Na2SO4 · 10H2O microcapsules could be promising candidates for the design of novel energy-saving materials with good thermal energy storage application.
Kurzfassung
Mikrokapseln mit modifiziertem Polymethylmethacrylat (PMMA) als Coatingpolymer und Natriumsulfatdekahydrat (Na2SO4 · 10H2O) als Kernmaterial wurden mittels Emulsionspolymerisation und Lösemittelverdampfung hergestellt. Die chemische Zusammensetzung und die mikroskopische Struktur der Mikrokapseln aus dem synthetisierten Phasenübergangsmaterial PMMA-AA/Na2SO4 · 10H2O wurde mittels Fourier-Transformations-Infrarot Spektroskopie (FT-IR), der polarisierten Lichtmikroskopie (POM) und der Rasterelektronenmikroskopie (SEM) bestätigt. Die thermischen Eigenschaften wurden mit der Differentialabtastkalorimetrie (DSC) genau analysiert. Die Ergebnisse zeigen, dass die Mikrokapseln gleichförmig und annähernd kugelig mit einem durchschnittlichen Durchmesser von 3,5 μm sind. Die Mikrokapseln haben einen Schmelzpunkt von 31,5°C, ihre Schmelzwärme beträgt 182,8 J/g. Es wurde gezeigt, dass die hergestellten PMMA-AA/Na2SO4 · 10H2O-Mikrokapseln vielversprechende Kandidaten für die Planung neuer energiesparender Materialien mit guter thermischer Energiespeicherung sein könnten.
References
1. Armand, M. and Tarascon, J. M.: Building better batteries. Nature.451 (2008) 652–657. 10.1038/451652aSuche in Google Scholar PubMed
2. Gur, I., Sawyer, K. and Prasher, R.: Searching for a Better Thermal Battery. Science.335 (2012) 1454–1455. 10.1126/science.1218761Suche in Google Scholar PubMed
3. Sarier, N. and Onder, E.: Organic phase change materials and their textile applications: An overview. Thermochim. Acta.540 (2012) 7–60. 10.1016/j.tca.2012.04.013Suche in Google Scholar
4. El-Sebaii, A. A., Al-Ghamdi, A. A., Al-Hazmi, F. S. Fadah and Adel, S.: Thermal performance of a single basin solar still with PCM as a storage medium. Appl. Energ.86 (2009) 1187–1195. 10.1016/j.apenergy.2008.10.014Suche in Google Scholar
5. Xia, L. and Zhang, P.: Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage. Sol. Energ. Mat. Sol. C.95 (2011) 2246–2254. 10.1016/j.solmat.2011.03.031Suche in Google Scholar
6. Kuznik, F. and Virgone, J.: Experimental assessment of a phase change material for wall building use. Appl. Energ.86 (2009) 2038–2046. 10.1016/j.apenergy.2009.01.004Suche in Google Scholar
7. Cho, J. S., A.Kwon and Cho, C. G.: Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid. Polym. Sci.280 (2002) 260–266. 10.1007/s00396-001-0603-xSuche in Google Scholar
8. Zou, G. L., Tan, Z. G., Lan, X. Z. and Sun, L. X.: Preparation and characterization of microencapsulated hexadecane used for thermal energy storage. Chinese Chem. Lett.15 (2004) 729–732, WOS:000222071000029.Suche in Google Scholar
9. Choi, K. Y., Cho, G., Kim, P. S. and Cho, C. G.: Thermal storage/release and mechanical properties of phase change materials on polyester fabrics. Text. Res. J.74 (2004) 292–296. 10.1177/004051750407400402Suche in Google Scholar
10. Fang, X. M., Z. G.Zhang and Chen, Z. H.: Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energ. Convers. Manage.49 (2008) 718–723. 10.1016/j.enconman.2007.07.031Suche in Google Scholar
11. Pekarek, K. J., J. S.Jacob and Mathiowitz, E.: Double-walled polymer microspheres for controlled drug-release. Nature.367 (1994) 258–260. 10.1038/367258a0Suche in Google Scholar PubMed
12. Zhao, C. Y. and Zhang, G. H.: Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renew. Sust. Energ. Rev.15 (2011) 3813–3832. 10.1016/j.rser.2011.07.019Suche in Google Scholar
13. Jin, Y., Lee, W. P., Musina, Z. and Ding, Y. L.: A one-step method for producing microencapsulated phase change materials. Particuology.8 (2010) 588–590. 10.1016/j.partic.2010.07.009Suche in Google Scholar
14. Alkan, C., San, A., Karaipekli, A. and Uzun, O.: Preparation, characterization and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energ. Mat. Sol. C.93 (2009) 143–147. 10.1016/j.solmat.2008.09.009Suche in Google Scholar
15. Qiu, X. L., Li, W., Song, G. L., Chu, X. D. and Tang, G. Y.: Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Sol. Energ. Mat. Sol.98 (2012) 283–293. 10.1016/j.solmat.2011.11.018Suche in Google Scholar
16. Pan, L., Tao, Q. H., Zhang, S. D., Wang, S. S., Zhang, J., Wang, S. H., Wang, Z. Y. and Zhang, Z. P.: Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol. Energ. Mat. Sol. C. (2012) 66–70. 10.1016/j.solmat.2011.09.020Suche in Google Scholar
17. Qiu, X. L., Li, W., Song, G. L., Chu, X. D. and Tang, G. Y.: Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy.46 (2012) 188–199. 10.1016/j.energy.2012.08.037Suche in Google Scholar
18. Salaun, F., Devaux, E., Dupont, D. and Gengembre, L.: Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. J. Membrane Sci.370 (2011) 23–33. 10.1016/j.memsci.2010.11.033Suche in Google Scholar
19. Bayes-Garcia, L., Ventola, L., Cordobilla, R., Benages, P., Calvet, T. and Cuevas-Diarte, M. A.: Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol. Energ. Mat. Sol. C.94 (2010) 1235–1240. 10.1016/j.solmat.2010.03.014Suche in Google Scholar
20. Hirano, S. and Saitoh, T. S.: Growth rate of crystallization in disodium hydrogenphosphate dodecahydrate. J. Thermophys. Heat Tr.16 (2002) 135–140. 10.2514/2.6663Suche in Google Scholar
21. Salaun, F., Devaux, E., Bourbigot, S. and Rumeau, P.: Influence of the solvent on the microencapsulation of an hydrated salt. Carbohyd. Polym.79 (2010) 964–974. 10.1016/j.carbpol.2009.10.027Suche in Google Scholar
22. Huang, J., Wang, T. Y., Zhu, P. P. and Xiao, J. B.: Preparation, characterization and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim. Acta.557 (2013) 1–6. 10.1016/j.tca.2013.01.019Suche in Google Scholar
23. Zhang, J., Wang, S. S., Zhang, S. D., Tao, H. Q., Pan, L., Wang, Z. Y. and Zhang, Z. P.: In Situ Synthesis and Phase Change Properties of Na2SO4 · 10H2O · SiO2 Solid Nanobowls toward Smart Heat Storage. J. Phys. Chem. C.115 (2011) 20061–20066. 10.1021/jp202373bSuche in Google Scholar
24. Biswas, D. R.: Thermal-energy storage using sodium-sulfate decahydrate and water. Sol. Energy.19 (1977) 99–100. 10.1016/0038-092X(77)90094-9Suche in Google Scholar
25. Zhang, H. Z. and Wang, X. D.: Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol. Energ. Mat. Sol. C.93 (2009) 1366–1376. 10.1016/j.solmat.2009.02.021Suche in Google Scholar
26. Qiu, X. L., Song, G. L., Chu, X. D., Li, X. Z. and Tang, G. Y.: Microencapsulated n-alkane with p(n-butyl methacrylate-co-methacrylic acid) shell as phase change materials for thermal energy storage. Sol. Energy.91 (2013) 212–220. 10.1016/j.solener.2013.01.022Suche in Google Scholar
27. Yang, R., H.Xu and Zhang, Y. P.: Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Sol. Energ. Mat. Sol. C.80 (2003) 405–416. 10.1016/j.solmat.2003.08.005Suche in Google Scholar
28. Alay, S., F.Gode and Alkan, C.: Synthesis and Thermal Properties of Poly(n-butyl acrylate)/n-Hexadecane Microcapsules Using Different Cross-Linkers and Their Application to Textile Fabrics. J. Appl. Polym. Sci.120 (2011) 2821–2829. 10.1002/app.33266Suche in Google Scholar
29. Ramrakhiani, M., P.Parashar and Datt, S. C.: Study of the degree of crystallinity in Eudragit/poly(methyl methacrylate) polyblends by X-ray diffraction. J. Appl. Polym. Sci.96 (2005) 1835–1838. 10.1002/app.21105Suche in Google Scholar
30. Sari, A., C.Alkan and Bilgin, C.: Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Appl. Energ.136 (2014) 217–227. 10.1016/j.apenergy.2014.09.047Suche in Google Scholar
31. Freitas, S., H. P.Merkle and Gander, B.: Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release.102 (2005) 313–332. 10.1016/j.jconrel.2004.10.015Suche in Google Scholar PubMed
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener