Home Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
Article
Licensed
Unlicensed Requires Authentication

Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage

  • Tao Wang , Hui Li , Qu-Liang Lu , Nan Wu and Yong Jiang
Published/Copyright: January 6, 2017
Become an author with De Gruyter Brill

Abstract

Microcapsules with modified polymethyl methacrylate (PMMA) as coating polymer and sodium sulfate decahydrate (Na2SO4 · 10H2O) as core materials were prepared using the emulsion polymerization and solvent evaporation methods. Chemical composition and microscopic structure of the synthesized PMMA-AA/Na2SO4 · 10 H2O phase change materials (PCMs) microcapsules were confirmed by Fourier-transform infrared spectroscopy, polarizing optical microscopy (POM), scanning electron microscopy (SEM). The thermal properties were analyzed by differential scanning calorimetry (DSC) in detail. The results show that the microcapsules are uniform and approximately spherical with an average diameter of about 3.5 μm. The melting point of the microcapsule is 31.5°C and the fusion heat is 182.8 J/g. This demonstrated that the prepared PMMA-AA/Na2SO4 · 10H2O microcapsules could be promising candidates for the design of novel energy-saving materials with good thermal energy storage application.

Kurzfassung

Mikrokapseln mit modifiziertem Polymethylmethacrylat (PMMA) als Coatingpolymer und Natriumsulfatdekahydrat (Na2SO4 · 10H2O) als Kernmaterial wurden mittels Emulsionspolymerisation und Lösemittelverdampfung hergestellt. Die chemische Zusammensetzung und die mikroskopische Struktur der Mikrokapseln aus dem synthetisierten Phasenübergangsmaterial PMMA-AA/Na2SO4 · 10H2O wurde mittels Fourier-Transformations-Infrarot Spektroskopie (FT-IR), der polarisierten Lichtmikroskopie (POM) und der Rasterelektronenmikroskopie (SEM) bestätigt. Die thermischen Eigenschaften wurden mit der Differentialabtastkalorimetrie (DSC) genau analysiert. Die Ergebnisse zeigen, dass die Mikrokapseln gleichförmig und annähernd kugelig mit einem durchschnittlichen Durchmesser von 3,5 μm sind. Die Mikrokapseln haben einen Schmelzpunkt von 31,5°C, ihre Schmelzwärme beträgt 182,8 J/g. Es wurde gezeigt, dass die hergestellten PMMA-AA/Na2SO4 · 10H2O-Mikrokapseln vielversprechende Kandidaten für die Planung neuer energiesparender Materialien mit guter thermischer Energiespeicherung sein könnten.


*Correspondence address, Prof. Yong Jiang, PhD, School of Chemistry and Chemical Engineering, Southeast University, Chemistry Building, Room 228 (O), 533 (Lab), No. 2 Dongnandaxue Road, Jiangning District, Nanjing, Jiangsu, 211189, P.R. China, Tel.: +86-13913993109, E-Mail: , Web: http://jianglab.net

Tao Wang was born in 1990. He is a postgraduate at Southeast University and he did his research in Chengxian College of Southeast University. His main scientific interest has been the synthesis and properties of phase change materials.

Hui Li was born in 1985. She is an associate professor at Chengxian College of Southeast University. Her main field of research is applications of polymers in industrial systems and green surfactant.

Qu-Liang Lu was born in 1982. He is a lecturer at Chengxian College of Southeast University. His main field of research is applications of polymers in industrial systems and physical chemistry.

Nan Wu was born in 1989. He is a postgraduate at Southeast University. His main field of research is applications of energy storage technology.

Prof. Yong Jiang was born in 1975. He graduated from Jilin University in 1996. He obtained his PhD in Institute of Chemistry, Chinese Academy of Sciences. During the year of 2005–2009 he did postdoc work at Duke University (Materials Science – Biomaterials) with Prof. Dr. Piotr E. Marszalek and Prof. Dr. Paul Modrich Center for Biological Inspired Materials and Material System in Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University. His research interests lie in detecting DNA damage and repair process in single-molecule level, phase change materials for energy storage and polymer materials. At the moment he is department dean of Biotechnology and Pharmaceutical Chemistry Department in the School of Chemistry and Chemical Engineering in Southeast University. Meanwhile he is a supervision in Chengxian College of Southeast University.


References

1. Armand, M. and Tarascon, J. M.: Building better batteries. Nature.451 (2008) 652657. 10.1038/451652aSearch in Google Scholar PubMed

2. Gur, I., Sawyer, K. and Prasher, R.: Searching for a Better Thermal Battery. Science.335 (2012) 14541455. 10.1126/science.1218761Search in Google Scholar PubMed

3. Sarier, N. and Onder, E.: Organic phase change materials and their textile applications: An overview. Thermochim. Acta.540 (2012) 760. 10.1016/j.tca.2012.04.013Search in Google Scholar

4. El-Sebaii, A. A., Al-Ghamdi, A. A., Al-Hazmi, F. S. Fadah and Adel, S.: Thermal performance of a single basin solar still with PCM as a storage medium. Appl. Energ.86 (2009) 11871195. 10.1016/j.apenergy.2008.10.014Search in Google Scholar

5. Xia, L. and Zhang, P.: Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage. Sol. Energ. Mat. Sol. C.95 (2011) 22462254. 10.1016/j.solmat.2011.03.031Search in Google Scholar

6. Kuznik, F. and Virgone, J.: Experimental assessment of a phase change material for wall building use. Appl. Energ.86 (2009) 20382046. 10.1016/j.apenergy.2009.01.004Search in Google Scholar

7. Cho, J. S., A.Kwon and Cho, C. G.: Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid. Polym. Sci.280 (2002) 260266. 10.1007/s00396-001-0603-xSearch in Google Scholar

8. Zou, G. L., Tan, Z. G., Lan, X. Z. and Sun, L. X.: Preparation and characterization of microencapsulated hexadecane used for thermal energy storage. Chinese Chem. Lett.15 (2004) 729732, WOS:000222071000029.Search in Google Scholar

9. Choi, K. Y., Cho, G., Kim, P. S. and Cho, C. G.: Thermal storage/release and mechanical properties of phase change materials on polyester fabrics. Text. Res. J.74 (2004) 292296. 10.1177/004051750407400402Search in Google Scholar

10. Fang, X. M., Z. G.Zhang and Chen, Z. H.: Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energ. Convers. Manage.49 (2008) 718723. 10.1016/j.enconman.2007.07.031Search in Google Scholar

11. Pekarek, K. J., J. S.Jacob and Mathiowitz, E.: Double-walled polymer microspheres for controlled drug-release. Nature.367 (1994) 258260. 10.1038/367258a0Search in Google Scholar PubMed

12. Zhao, C. Y. and Zhang, G. H.: Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renew. Sust. Energ. Rev.15 (2011) 38133832. 10.1016/j.rser.2011.07.019Search in Google Scholar

13. Jin, Y., Lee, W. P., Musina, Z. and Ding, Y. L.: A one-step method for producing microencapsulated phase change materials. Particuology.8 (2010) 588590. 10.1016/j.partic.2010.07.009Search in Google Scholar

14. Alkan, C., San, A., Karaipekli, A. and Uzun, O.: Preparation, characterization and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energ. Mat. Sol. C.93 (2009) 143147. 10.1016/j.solmat.2008.09.009Search in Google Scholar

15. Qiu, X. L., Li, W., Song, G. L., Chu, X. D. and Tang, G. Y.: Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Sol. Energ. Mat. Sol.98 (2012) 283293. 10.1016/j.solmat.2011.11.018Search in Google Scholar

16. Pan, L., Tao, Q. H., Zhang, S. D., Wang, S. S., Zhang, J., Wang, S. H., Wang, Z. Y. and Zhang, Z. P.: Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol. Energ. Mat. Sol. C. (2012) 6670. 10.1016/j.solmat.2011.09.020Search in Google Scholar

17. Qiu, X. L., Li, W., Song, G. L., Chu, X. D. and Tang, G. Y.: Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy.46 (2012) 188199. 10.1016/j.energy.2012.08.037Search in Google Scholar

18. Salaun, F., Devaux, E., Dupont, D. and Gengembre, L.: Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. J. Membrane Sci.370 (2011) 2333. 10.1016/j.memsci.2010.11.033Search in Google Scholar

19. Bayes-Garcia, L., Ventola, L., Cordobilla, R., Benages, P., Calvet, T. and Cuevas-Diarte, M. A.: Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol. Energ. Mat. Sol. C.94 (2010) 12351240. 10.1016/j.solmat.2010.03.014Search in Google Scholar

20. Hirano, S. and Saitoh, T. S.: Growth rate of crystallization in disodium hydrogenphosphate dodecahydrate. J. Thermophys. Heat Tr.16 (2002) 135140. 10.2514/2.6663Search in Google Scholar

21. Salaun, F., Devaux, E., Bourbigot, S. and Rumeau, P.: Influence of the solvent on the microencapsulation of an hydrated salt. Carbohyd. Polym.79 (2010) 964974. 10.1016/j.carbpol.2009.10.027Search in Google Scholar

22. Huang, J., Wang, T. Y., Zhu, P. P. and Xiao, J. B.: Preparation, characterization and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim. Acta.557 (2013) 16. 10.1016/j.tca.2013.01.019Search in Google Scholar

23. Zhang, J., Wang, S. S., Zhang, S. D., Tao, H. Q., Pan, L., Wang, Z. Y. and Zhang, Z. P.: In Situ Synthesis and Phase Change Properties of Na2SO4 · 10H2O · SiO2 Solid Nanobowls toward Smart Heat Storage. J. Phys. Chem. C.115 (2011) 2006120066. 10.1021/jp202373bSearch in Google Scholar

24. Biswas, D. R.: Thermal-energy storage using sodium-sulfate decahydrate and water. Sol. Energy.19 (1977) 99100. 10.1016/0038-092X(77)90094-9Search in Google Scholar

25. Zhang, H. Z. and Wang, X. D.: Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol. Energ. Mat. Sol. C.93 (2009) 13661376. 10.1016/j.solmat.2009.02.021Search in Google Scholar

26. Qiu, X. L., Song, G. L., Chu, X. D., Li, X. Z. and Tang, G. Y.: Microencapsulated n-alkane with p(n-butyl methacrylate-co-methacrylic acid) shell as phase change materials for thermal energy storage. Sol. Energy.91 (2013) 212220. 10.1016/j.solener.2013.01.022Search in Google Scholar

27. Yang, R., H.Xu and Zhang, Y. P.: Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Sol. Energ. Mat. Sol. C.80 (2003) 405416. 10.1016/j.solmat.2003.08.005Search in Google Scholar

28. Alay, S., F.Gode and Alkan, C.: Synthesis and Thermal Properties of Poly(n-butyl acrylate)/n-Hexadecane Microcapsules Using Different Cross-Linkers and Their Application to Textile Fabrics. J. Appl. Polym. Sci.120 (2011) 28212829. 10.1002/app.33266Search in Google Scholar

29. Ramrakhiani, M., P.Parashar and Datt, S. C.: Study of the degree of crystallinity in Eudragit/poly(methyl methacrylate) polyblends by X-ray diffraction. J. Appl. Polym. Sci.96 (2005) 18351838. 10.1002/app.21105Search in Google Scholar

30. Sari, A., C.Alkan and Bilgin, C.: Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Appl. Energ.136 (2014) 217227. 10.1016/j.apenergy.2014.09.047Search in Google Scholar

31. Freitas, S., H. P.Merkle and Gander, B.: Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release.102 (2005) 313332. 10.1016/j.jconrel.2004.10.015Search in Google Scholar PubMed

Received: 2016-06-02
Accepted: 2016-10-23
Published Online: 2017-01-06
Published in Print: 2017-01-20

© 2017, Carl Hanser Publisher, Munich

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110477/html?srsltid=AfmBOorDLgKXGR0XurLo9xZrWF7qH-rFHKHYJAPbVNu0u9Y33ma9lYwv
Scroll to top button