Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
-
Feiyu Chen
Abstract
In order to obtain higher surface activity and lower foaming ability, novel asymmetric Gemini alkyl polyglycosides were synthetized based on tertiary dodecyl dimethyl amine and epoxy chloropropane by adopting chlorination, substitution, and quaternization reactions. The structure of synthesis product was characterized by using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy and elemental analysis. It was confirmed that the synthesis product was an asymmetric glycoside quaternary ammonium salt with double ionic head groups. The critical micelle concentration of the resulting product was 0.025 g/mL at 20°C and its surface tension was low to 22.8 mN/m. The emulsifying ability and wettability of the product were the same as or even better than those of the commonly used surfactants. Moreover, the product revealed low foaming ability.
Kurzfassung
Mit dem Ziel, eine höhere Oberflächenaktivität und eine geringeres Schaumvermögen zu erreichen, wurden neue asymmetrische Gemini-Alkylpolyglycoside auf Basis von tert.-Dodecyldimethylamin und Epoxychlorpropan unter Anwendung von Chlorierung, Substitution und Quaternierungsreaktion erzeugt. Die Struktur der Syntheseprodukte wurde mittels Fourier-Transformations-Infrarotspektroskopie (FT-IR), 1H-Kernspinresonanz-Spektroskopie (1H-NMR) und Elementaranalyse bestimmt. Es konnte bestätigt werden, dass es sich bei dem Syntheseprodukt um ein asymmetrisches, quaternäres Ammoniumglycosid mit zwei ionischen Kopfgruppen handelt. Die kritische Mizellenbildungskonzentration (CMC) des Syntheseprodukts betrug bei 20°C 0,025 g/mL, die Oberflächenspannung an der CMC lag bei 22,8 mN/m. Die Emulgierfähigkeit und das Benetzungsverhalten des Produkts waren gleich oder sogar besser als die der üblich eingesetzten Tenside. Außerdem zeigte das Produkt ein geringes Schaumvermögen.
References
1. Salati, S., Papa, G. and Adani, F.: Perspective on the use of humic acids from biomass as natural surfactants for industrial applications, Biotechnol. Adv.29 (2011) 913–922. 10.1016/j.biotechadv.2011.07.012Suche in Google Scholar PubMed
2. Balzer, D.: Nonionic Surfactants: Alkyl Polyglucosides, in: LudersH. (Ed.) Marcel Dekker Inc., New York (2000). 9780824793906Suche in Google Scholar
3. Ryan, L. D. and Kaler, E. W.: Alkyl polyglucoside microemulsion phase behavior, Colloid Surface A.176 (1993) 69–83. 10.1016/S0927-7757(00)00614-2Suche in Google Scholar
4. Panintrarux, C., Adachi, S., Araki, Y., Kimura, Y. and Matsuno, R: Equilibrium yield of n-alkyl-β-D-Glucoside through condensation of glucose and n-alcohol by-glucosidase in a biphasic system, Enzyme Microb. Technol.17 (1995) 32–40. 10.1016/0141-0229(94)00082-3Suche in Google Scholar
5. Rantwijk, F., Oosterom, M. W. and Sheldon, R. A.: Glycosidase-catalysed synthesis of alkylglycosides, J. Mol. Catal. B-Enzym6 (1999) 511–532. 10.1016/S1381-1177(99)00042-9Suche in Google Scholar
6. Helferich, B. and Schmitz-Hillebrecht, E: Eine neue Methode zur Synthese von Glykosiden der Phenole. Berichte der deutschen chemischen Gesellschaft (A and B Series)66 (1933) 378–383. 10.1002/cber.19330660313Suche in Google Scholar
7. Wuest, W., Wollmann, J. and Eskuchen, R.: Modified process for the direct production of alkylglycosides, US Patent. US5559219ASuche in Google Scholar
8. Menger, F. M. and Keiper, J. S.: Gemini Surfactants, Angew. Chem. Int. Edit.39 (2000) 1906–1920. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSuche in Google Scholar
9. Blanzat, M., Perez, E., Rico-Lattes, I., Prome, D., Prome, J. C. and Lattes, A.: New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and gemini catanionic analogues of galacotsylcramide(gal β1 cer), Langmuir15 (1999) 6163–6169. 10.1021/la990300ySuche in Google Scholar
10. Jaeger, D. A., Li, B. and Clark, T.Jr.: Cleavable double-chain surfactants with one cationic and one anionic head group that from vesicle, Langmuir12 (1996) 4314–4316. 10.1021/la960012rSuche in Google Scholar
11. Oda, R., Panizza, P., Schmutz, M., and Lequeux, F.: Direct evidence of the shear-induced structure of wormlike micelles: Gemini surfactant 12-2-12, Langmuir13 (1997) 6407–6512. 10.1021/la9621170Suche in Google Scholar
12. Zhu, S., Cheng, F., Wang, J., and Yu, J.: Anionic Gemini surfactants: Synthesis and aggregation properties in aqueous solutions, Colloids & Surfaces A281 (2006) 35–39. 10.1016/j.colsurfa.2005.02.045Suche in Google Scholar
13. Zhou, T. and Zhao, J.: Synthesis and thermotropic liquid crystalline properties of zwitterionic Gemini surfactants containing a quaternary ammonium and a sulfate group, J. Colloid. Interf. Sci.338 (2009) 156–162. 10.1016/j.jcis.2009.06.009Suche in Google Scholar PubMed
14. Zhou, T. and Zhao, J.: Synthesis and thermotropic liquid crystallineproperties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group, J. Colloid. Interf. Sci.331 (2008) 476–83. 10.1016/j.jcis.2008.11.056Suche in Google Scholar PubMed
15. Alami, EI-O., and Holmberg, K.: Hetero Gemini surfactants, Adv Colloid Interfac100–102(2003): 13–46. 10.1016/S0001-8686(02)00072-6Suche in Google Scholar
16. Song, B., Hu, Y., Song, Y. and Zhao, J.: Alkyl chain length-dependent viscoelastic properties in aqueous wormlike micellar solutions of anionic gemini surfactants with an azobenzene spacer, J. Colloid. Interf. Sci.341 (2010) 94–100. 10.1016/j.jcis.2009.09.023Suche in Google Scholar PubMed
17. Oda, R., Huc, I. and Candau, J.: Gemini Surfactants, the Effect of Hydrophobic Chain Length and Dissymmetry, Chem. Commun.21 (1997) 2105–2106. 10.1039/a704069eSuche in Google Scholar
18. Faure, D., Gravier, J., Labrot, T., Desbat, B., Oda, R. and Bassani, D. M.: Photoinduced morphism of Gemini surfactant aggregates, Chem. Commun. (2005) 1167–1169. 10.1039/B416287KSuche in Google Scholar
19. Kim, T. S., Kida, T., Nakatsuji, Y., Hirao, T. and Ikeda, I.: Surface-active Properties of Novel Cationic Surfactants with Two Alkyl Chains and Two Ammonio groups, J. Am. Oil Chem. Soc.73 (1996) 907–911. 10.1007/BF02517994Suche in Google Scholar
20. Zhu, S., Cheng, F., Wang, J. and Yu, J.: Anionic Gemini surfactants: Synthesis and aggregation properties in aqueous solutions, Colloid. Surface A281 (2006) 35–39. 10.1016/j.colsurfa.2005.02.045Suche in Google Scholar
21. Pei, X., Zhao, J. and Wei, X.: Wormlike micelles formed by mixed cationic and anionic gemini surfactants in aqueous solution, J. Colloid. Interf. Sci.356 (2011) 176–181. 10.1016/j.jcis.2010.12.065Suche in Google Scholar PubMed
22. Wu, Y., Wang, J., Liu, M. and Liang, W.: ESR Studies on the Micellization Behaviors of a Series of Novel Asymmetric Gemini Surfactants, Chinese J. Chem.20 (2002) 550–553. 10.1002/cjoc.20020200606Suche in Google Scholar
23. Oda, R., Huc, I., Danino, D. and Talmon, Y.: Aggregation properties and Mixing Behavior of Hydrocarbon fluorocarbon and hydrod hydrocarbon fluorocarbon cationic dimeric surfactants, Langmuir16 (2000) 9759–9769. 10.1021/la0008075Suche in Google Scholar
24. Bai, G., Wang, J., Wang, Y. and Yan, H.: Thermodunamic of Hydrophobic Interaction of Dissymmetric Gemini Surfactants in Aqueous Solutions, J. Phys. Chem. B106 (2000) 6614–6616. 10.1021/jp0143903Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener