Startseite Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite

  • Fenfen Li , Yeqian Wen , Xueqing Yu , Songmei Zhang und Gang Li
Veröffentlicht/Copyright: 6. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a humate surfactant based on humic substances which were derived from lignite by modification of hydroxymethylation and esterification methods respectively was prepared. Determined by surface tension method, the cmc (critical micelle concentration) of the humate surfactant is 1.534 g/L and the corresponding surface tension is 48.8 mN/m. The optimum conditions of the modified processes are as follows: hydroxymethylation modification at pH 10.5, reaction temperature 90°C, reaction time of 60 min, dosage of stock (formaldehyde/lignite/g g−1) 10:10, and the amount of reacted paraformaldehyde was 6.23 mmol/g lignite. The esterification modification was carried but at 70°C, reaction time 10 h, dosage of 6.0 mmol n-decanoyl chloride/g lignite. The conversion rate of n-decanoyl chloride was 95%.

Kurzfassung

In diesem Beitrag wurde ein Humat-Tensid basierend auf Huminverbindungen, die aus Braunkohle durch modifizierte Hydroxymethylierungs- und Veresterungsreaktionen stammen, präpariert. Die Bestimmung der Oberflächenspannung liefert für das Humat-Tensid eine kritische Mizellenbildungskonzentration (cmc) von 1,534 g/L; die Oberflächenspannung an der cmc beträgt 48,8 mN/m. Die optimalen Verfahrensbedingungen der modifizierten Hydroxymethylierung sind: pH = 10,5; Reaktionstemperatur = 90°C, Reaktionszeit = 60 Minuten, Dosierung des Formaldehyd-Braunhohle-Stocks (g g−1) = 10:10. Die Menge an Paraformaldehyd betrug 6.23 mmol/g Braunkohle. Die Versterungsreaktion wurde bei einer Reaktionstemperatur von 70°C, einer Reaktionszeit von 10 Stunden und einer n-Decanoylchlorid-Dosierung von 6 mmol pro g Braunkohle durchgeführt. Es wurden 90% des n-Decanoylchlorids umgesetzt.


*Correspondence address, Prof. Gang Li, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China, E-Mail:

Gang Li is a research professor now working as a dean of chemical engineering institute of Hebei University of Technology in China, His area of research is synthesis and application of fine chemicals.

Fenfen Li is a postgraduate student of Hebei University of Technology, her research interests are modification and application of lignite and humic acids originated from lignite.

Yeqian Wen is a PhD of Hebei University of Technology, and woring as a laboratory technician. Her research interests are organic synthesis

Xueqing Yu is working as a teacher in chemical engineering institute of Hebei University of Technology.

Songmei Zhang is a senior laboratory technician and working in chemical engineering institute of Hebei University of Technology.


References

1. Wu, J. H., Liu, J. Z., Zhang, X., Wang, Z. H., Zhou, J. H. and Chen, K. F.: Chemical and structural changes in XiMeng lignite and its carbon migration during hydrothermal dewatering. Fuel148 (2015) 139144. 10.1016/j.fuel.2015.01.102Suche in Google Scholar

2. Nikolopoulos, N., Violidakis, I., Karampinis, E., Agraniotis, M., Bergins, C., Grammelis, P. and Kakaras, E.: Report on comparison among current industrial scale lignite drying technologies (A critical review of current technologies). Fuel155 (2015) 86114. 10.1016/j.fuel.2015.03.065Suche in Google Scholar

3. Peuravuori, J., Žbánková, P. and Pihlaja, K.: Aspects of structural features in lignite and lignite humic acids. Fuel Process. Technol.87 (2006) 829839. 10.1016/j.fuproc.2006.05.003Suche in Google Scholar

4. Stevenson, F. J.: Humic chemistry: Genesis, Composition, Reactions. Wiley & Sons, New York (1994).Suche in Google Scholar

5. Catrouillet, C., Davranche, M., Dia, A., Coz, M. B. L., Marsac, R., Pourret, O. and Gruau, G.: Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chem. Geol.372 (2014) 109118. 10.1016/j.chemgeo.2014.02.019Suche in Google Scholar

6. Čtvrtníčková, A., Drastík, M., David, J. and Kučerík, J.: Surface and solution behavior of surfactants produced from lignite humic acids. Fresen Environ. Bull.20 (2011) 17641771.Suche in Google Scholar

7. Kautenburger, R., Hein, C., Sander, J. M. and Beck, H. P.: Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS. Anal. Chim. Acta.816 (2014) 5059. 10.1016/j.aca.2014.01.044Suche in Google Scholar

8. Schmeide, K., Sachs, S., Bubner, M., Reich, T., Heise, K. H. and Bernhard, G.: Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy. Inorg. Chim. Acta.351 (2003) 133140. 10.1016/s0020-1693(03)00184-1Suche in Google Scholar

9. Andjelkovic, T., Perovic, J., Purenovic, M., Blagojevic, S., Nikolic, R., Andjelkovic, D. and Bojic, A.: Spectroscopic and potentiometric studies on derivatized natural humic substancess. Anal. Sci.22 (2006) 15531558. 10.2116/analsci.22.1553Suche in Google Scholar PubMed

10. Cihlář, Z., Vojtová, L., Conte, P., Nasir, S. and Kučerík, J.: Hydration and water holding properties of cross-linked lignite humic substances. Geoderma230 (2014) 151160. 10.1016/j.geoderma.2014.04.018Suche in Google Scholar

11. Terashima, M., Tanaka, S. and Fukushima, M.: Coagulation characteristics of humic substances modified with glucosamine or taurine. Chemosphere69 (2007) 240246. 10.1016/j.chemosphere.2007.04.012Suche in Google Scholar PubMed

12. Qu, J., Tao, X., He, H., Zhang, X., Xu, N. and Zhang, B.: Synergistic Effect of Surfactants and a Collector on the Flotation of a Low-Rank Coal. Int. J. Coal. Prep. Util.35 (2015) 1424. 10.1080/19392699.2014.904295Suche in Google Scholar

13. Klavinš, M. and Purmalis, O.: Surface activity of humic substancess depending on their origin and humification degree. Proceedings of the Latvian Academy of Sciences67 (2014) 493499. 10.2478/prolas-2013-0083Suche in Google Scholar

14. Shang, C. and Rice, J. A.: Investigation of humate-cetyltrimethylammonium complexes by small-angle X-ray scattering, J. Colloid. Interf. Sci.305 (2007) 5761. 10.1016/j.jcis.2006.09.043Suche in Google Scholar

15. Conte, P., Agretto, A., Spaccini, R. and Piccolo, A.: Soil remediation: humic substancess as natural surfactants in the washings of highly contaminated soils. Environ Pollut135 (2005) 515522. 10.1016/j.envpol.2004.10.006Suche in Google Scholar

16. Vlčková, Z., Grasset, L., Antošová, B., Pekař, M. and Kučerík, J.: Lignite pre-treatment and its effect on bio-stimulative properties of respective lignite humic acids. Soil. Biol. Biochem.41 (2009) 18941901. 10.1016/j.soilbio.2009.06.013Suche in Google Scholar

17. Zhang, J. M., Li, G., Yang, F., Xu, N., Fan, H. X., Yuan, T. and Chen, L.: Hydrophobically modified sodium humate surfactant: ultra-low interfacial tension at the Oil/Water interface. Appl. Surf. Sci.259 (2012) 774779. 10.1016/j.apsusc.2012.07.120Suche in Google Scholar

18. Schulten, H.-R.: The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry. Fresenius J. Anal. Chem.351 (1995) 6273. 10.1007/BF00324293Suche in Google Scholar

19. Ryabova, I. N. and Mustafina, G. A.: Modification of coal humic substancess with formaldehyde. Russ. J. Appl. Chem.76 (2003) 261263. 10.1023/A1024606830064Suche in Google Scholar

20. Kucerík, J., Pekař, M. and Klučáková, M.: South-Moravian lignite-potential source of humic substances. Petroleum and Coal45 (2003) 5862.Suche in Google Scholar

21. Schnitzer, M. and Kahn, S. U.: Humic Substances in the environment. Soil. Sci.117 (1972).Suche in Google Scholar

22. Fasurová, N., Čechlovská, H. and Kučerík, J.: A comparative study of South Moravian lignite and standard IHSS humic substancess' optical and colloidal properties. Petroleum & coal48 (2006) 2432.Suche in Google Scholar

23. Peuravuori, J. and Pihlaja, K.: Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal. Chim. Acta.337 (1997) 133149. 10.1016/s0003-2670(96)00412-6Suche in Google Scholar

24. Arvand, M., Bozorgzadeh, E., Shariati, S. and ZanjanchiM. A.: Ionic liquid-based dispersive liquid-liquid microextraction for the determination of formaldehyde in wastewaters and detergents. Environ. Monit. Assess.184 (2012) 75977605. 10.1007/s10661-012-2521-4Suche in Google Scholar PubMed

25. Nascimento, C. F., Brasil, M. A. S., Costa, S. P. F., Pinto, P. C. A. G., Saraiva, M. L. M. F. S. and Rocha, F. R. P.: Exploitation of pulsed flows for on-line dispersive liquid–liquid microextraction: spectrophotometric determination of formaldehyde in milk. Talanta144 (2015) 11891194. 10.1016/j.talanta.2015.07.076Suche in Google Scholar PubMed

26. Solomons, T. W. G. and Fryhle, C. B.: Organic Chemistry, 8th ed, in: Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon, John Wiley & Sons, Inc. (2004) 834.Suche in Google Scholar

27. Chen, Y., Senesi, N. and Schnitzer, M.: Information provided on humic substances by E4/E6 ratios. Soil. Sci. Soc. Am. J41 (1977) 352358. 10.2136/sssaj1977.03615995004100020037xSuche in Google Scholar

28. Novák, F., Šestauberová, M. and Hrabal, R.: Structural features of lignohumic substances. J Mol Struct1093 (2015) 179185. 10.1016/j.molstruc.2015.03.054Suche in Google Scholar

29. Zhang, W., Jiang, S., Wang, K., Wang, L., Xu, Y., Wu, Z., Shao, H. and Wang, Y.: Thermogravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures. Int. J. Coal. Prep. Util.35 (2015) 3950. 10.1080/19392699.2013.873421Suche in Google Scholar

30. Fernandes, A. N., Giovanela, M., Esteves, V. I. and SierraM. M. D. S.: Elemental and spectral properties of peat and soil samples and their respective humic substances, J. Mol. Struct.971 (2010) 3338. 10.1016/j.molstruc.2010.02.069Suche in Google Scholar

31. Traversa, A., Gattullo, E. C. E., Bashore, A. J. T. L. and Senesi, N.: Comparative evaluation of compost humic substancess and their effects on the germination of switchgrass (Panicum Virgatum L.). J. Soil. Sediment14 (2014) 432440. 10.1007/s11368-013-0653-ySuche in Google Scholar

32. Francioso, O., Ciavatta, C., Montecchio, D., Tugnoli, V., Sánchez-Cortés, S. and Gessa, C.: Quantitative estimation of peat, brown coal and lignite humic acids Using chemical parameters, H-1-NMR and DTA analyses. Bioresource Technol.88 (2003) 189195. 10.1016/s0960-8524(03)00004-xSuche in Google Scholar

33. Khanna, R., Witt, M., Anwer, M. K., Agarwal, S. and Koch, B. P.: Spectroscopic characterization of fulvic acids extracted from the rock exudate Shilajit. Org. Geochem.39 (2008) 17191724. 10.1016/j.orggeochem.2008.08.009Suche in Google Scholar

34. Yu, J. L., Yang, F., Liu, Z. H., Liu, Y. N. and Li, G.: Preparation and characterization of C10-C14 alkyl cellulose ester sulfate surfactant. J. Surfactants. Deterg.17 (2014) 647653. 10.1007/s11743-013-1506-9Suche in Google Scholar

Received: 2016-02-05
Accepted: 2016-04-14
Published Online: 2017-01-06
Published in Print: 2017-01-20

© 2017, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110475/html
Button zum nach oben scrollen