Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
-
Fenfen Li
Abstract
In this paper, a humate surfactant based on humic substances which were derived from lignite by modification of hydroxymethylation and esterification methods respectively was prepared. Determined by surface tension method, the cmc (critical micelle concentration) of the humate surfactant is 1.534 g/L and the corresponding surface tension is 48.8 mN/m. The optimum conditions of the modified processes are as follows: hydroxymethylation modification at pH 10.5, reaction temperature 90°C, reaction time of 60 min, dosage of stock (formaldehyde/lignite/g g−1) 10:10, and the amount of reacted paraformaldehyde was 6.23 mmol/g lignite. The esterification modification was carried but at 70°C, reaction time 10 h, dosage of 6.0 mmol n-decanoyl chloride/g lignite. The conversion rate of n-decanoyl chloride was 95%.
Kurzfassung
In diesem Beitrag wurde ein Humat-Tensid basierend auf Huminverbindungen, die aus Braunkohle durch modifizierte Hydroxymethylierungs- und Veresterungsreaktionen stammen, präpariert. Die Bestimmung der Oberflächenspannung liefert für das Humat-Tensid eine kritische Mizellenbildungskonzentration (cmc) von 1,534 g/L; die Oberflächenspannung an der cmc beträgt 48,8 mN/m. Die optimalen Verfahrensbedingungen der modifizierten Hydroxymethylierung sind: pH = 10,5; Reaktionstemperatur = 90°C, Reaktionszeit = 60 Minuten, Dosierung des Formaldehyd-Braunhohle-Stocks (g g−1) = 10:10. Die Menge an Paraformaldehyd betrug 6.23 mmol/g Braunkohle. Die Versterungsreaktion wurde bei einer Reaktionstemperatur von 70°C, einer Reaktionszeit von 10 Stunden und einer n-Decanoylchlorid-Dosierung von 6 mmol pro g Braunkohle durchgeführt. Es wurden 90% des n-Decanoylchlorids umgesetzt.
References
1. Wu, J. H., Liu, J. Z., Zhang, X., Wang, Z. H., Zhou, J. H. and Chen, K. F.: Chemical and structural changes in XiMeng lignite and its carbon migration during hydrothermal dewatering. Fuel148 (2015) 139–144. 10.1016/j.fuel.2015.01.102Suche in Google Scholar
2. Nikolopoulos, N., Violidakis, I., Karampinis, E., Agraniotis, M., Bergins, C., Grammelis, P. and Kakaras, E.: Report on comparison among current industrial scale lignite drying technologies (A critical review of current technologies). Fuel155 (2015) 86–114. 10.1016/j.fuel.2015.03.065Suche in Google Scholar
3. Peuravuori, J., Žbánková, P. and Pihlaja, K.: Aspects of structural features in lignite and lignite humic acids. Fuel Process. Technol.87 (2006) 829–839. 10.1016/j.fuproc.2006.05.003Suche in Google Scholar
4. Stevenson, F. J.: Humic chemistry: Genesis, Composition, Reactions. Wiley & Sons, New York (1994).Suche in Google Scholar
5. Catrouillet, C., Davranche, M., Dia, A., Coz, M. B. L., Marsac, R., Pourret, O. and Gruau, G.: Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chem. Geol.372 (2014) 109–118. 10.1016/j.chemgeo.2014.02.019Suche in Google Scholar
6. Čtvrtníčková, A., Drastík, M., David, J. and Kučerík, J.: Surface and solution behavior of surfactants produced from lignite humic acids. Fresen Environ. Bull.20 (2011) 1764–1771.Suche in Google Scholar
7. Kautenburger, R., Hein, C., Sander, J. M. and Beck, H. P.: Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS. Anal. Chim. Acta.816 (2014) 50–59. 10.1016/j.aca.2014.01.044Suche in Google Scholar
8. Schmeide, K., Sachs, S., Bubner, M., Reich, T., Heise, K. H. and Bernhard, G.: Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy. Inorg. Chim. Acta.351 (2003) 133–140. 10.1016/s0020-1693(03)00184-1Suche in Google Scholar
9. Andjelkovic, T., Perovic, J., Purenovic, M., Blagojevic, S., Nikolic, R., Andjelkovic, D. and Bojic, A.: Spectroscopic and potentiometric studies on derivatized natural humic substancess. Anal. Sci.22 (2006) 1553–1558. 10.2116/analsci.22.1553Suche in Google Scholar PubMed
10. Cihlář, Z., Vojtová, L., Conte, P., Nasir, S. and Kučerík, J.: Hydration and water holding properties of cross-linked lignite humic substances. Geoderma230 (2014) 151–160. 10.1016/j.geoderma.2014.04.018Suche in Google Scholar
11. Terashima, M., Tanaka, S. and Fukushima, M.: Coagulation characteristics of humic substances modified with glucosamine or taurine. Chemosphere69 (2007) 240–246. 10.1016/j.chemosphere.2007.04.012Suche in Google Scholar PubMed
12. Qu, J., Tao, X., He, H., Zhang, X., Xu, N. and Zhang, B.: Synergistic Effect of Surfactants and a Collector on the Flotation of a Low-Rank Coal. Int. J. Coal. Prep. Util.35 (2015) 14–24. 10.1080/19392699.2014.904295Suche in Google Scholar
13. Klavinš, M. and Purmalis, O.: Surface activity of humic substancess depending on their origin and humification degree. Proceedings of the Latvian Academy of Sciences67 (2014) 493–499. 10.2478/prolas-2013-0083Suche in Google Scholar
14. Shang, C. and Rice, J. A.: Investigation of humate-cetyltrimethylammonium complexes by small-angle X-ray scattering, J. Colloid. Interf. Sci.305 (2007) 57–61. 10.1016/j.jcis.2006.09.043Suche in Google Scholar
15. Conte, P., Agretto, A., Spaccini, R. and Piccolo, A.: Soil remediation: humic substancess as natural surfactants in the washings of highly contaminated soils. Environ Pollut135 (2005) 515–522. 10.1016/j.envpol.2004.10.006Suche in Google Scholar
16. Vlčková, Z., Grasset, L., Antošová, B., Pekař, M. and Kučerík, J.: Lignite pre-treatment and its effect on bio-stimulative properties of respective lignite humic acids. Soil. Biol. Biochem.41 (2009) 1894–1901. 10.1016/j.soilbio.2009.06.013Suche in Google Scholar
17. Zhang, J. M., Li, G., Yang, F., Xu, N., Fan, H. X., Yuan, T. and Chen, L.: Hydrophobically modified sodium humate surfactant: ultra-low interfacial tension at the Oil/Water interface. Appl. Surf. Sci.259 (2012) 774–779. 10.1016/j.apsusc.2012.07.120Suche in Google Scholar
18. Schulten, H.-R.: The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry. Fresenius J. Anal. Chem.351 (1995) 62–73. 10.1007/BF00324293Suche in Google Scholar
19. Ryabova, I. N. and Mustafina, G. A.: Modification of coal humic substancess with formaldehyde. Russ. J. Appl. Chem.76 (2003) 261–263. 10.1023/A1024606830064Suche in Google Scholar
20. Kucerík, J., Pekař, M. and Klučáková, M.: South-Moravian lignite-potential source of humic substances. Petroleum and Coal45 (2003) 58–62.Suche in Google Scholar
21. Schnitzer, M. and Kahn, S. U.: Humic Substances in the environment. Soil. Sci.117 (1972).Suche in Google Scholar
22. Fasurová, N., Čechlovská, H. and Kučerík, J.: A comparative study of South Moravian lignite and standard IHSS humic substancess' optical and colloidal properties. Petroleum & coal48 (2006) 24–32.Suche in Google Scholar
23. Peuravuori, J. and Pihlaja, K.: Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal. Chim. Acta.337 (1997) 133–149. 10.1016/s0003-2670(96)00412-6Suche in Google Scholar
24. Arvand, M., Bozorgzadeh, E., Shariati, S. and ZanjanchiM. A.: Ionic liquid-based dispersive liquid-liquid microextraction for the determination of formaldehyde in wastewaters and detergents. Environ. Monit. Assess.184 (2012) 7597–7605. 10.1007/s10661-012-2521-4Suche in Google Scholar PubMed
25. Nascimento, C. F., Brasil, M. A. S., Costa, S. P. F., Pinto, P. C. A. G., Saraiva, M. L. M. F. S. and Rocha, F. R. P.: Exploitation of pulsed flows for on-line dispersive liquid–liquid microextraction: spectrophotometric determination of formaldehyde in milk. Talanta144 (2015) 1189–1194. 10.1016/j.talanta.2015.07.076Suche in Google Scholar PubMed
26. Solomons, T. W. G. and Fryhle, C. B.: Organic Chemistry, 8th ed, in: Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon, John Wiley & Sons, Inc. (2004) 834.Suche in Google Scholar
27. Chen, Y., Senesi, N. and Schnitzer, M.: Information provided on humic substances by E4/E6 ratios. Soil. Sci. Soc. Am. J41 (1977) 352–358. 10.2136/sssaj1977.03615995004100020037xSuche in Google Scholar
28. Novák, F., Šestauberová, M. and Hrabal, R.: Structural features of lignohumic substances. J Mol Struct1093 (2015) 179–185. 10.1016/j.molstruc.2015.03.054Suche in Google Scholar
29. Zhang, W., Jiang, S., Wang, K., Wang, L., Xu, Y., Wu, Z., Shao, H. and Wang, Y.: Thermogravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures. Int. J. Coal. Prep. Util.35 (2015) 39–50. 10.1080/19392699.2013.873421Suche in Google Scholar
30. Fernandes, A. N., Giovanela, M., Esteves, V. I. and SierraM. M. D. S.: Elemental and spectral properties of peat and soil samples and their respective humic substances, J. Mol. Struct.971 (2010) 33–38. 10.1016/j.molstruc.2010.02.069Suche in Google Scholar
31. Traversa, A., Gattullo, E. C. E., Bashore, A. J. T. L. and Senesi, N.: Comparative evaluation of compost humic substancess and their effects on the germination of switchgrass (Panicum Virgatum L.). J. Soil. Sediment14 (2014) 432–440. 10.1007/s11368-013-0653-ySuche in Google Scholar
32. Francioso, O., Ciavatta, C., Montecchio, D., Tugnoli, V., Sánchez-Cortés, S. and Gessa, C.: Quantitative estimation of peat, brown coal and lignite humic acids Using chemical parameters, H-1-NMR and DTA analyses. Bioresource Technol.88 (2003) 189–195. 10.1016/s0960-8524(03)00004-xSuche in Google Scholar
33. Khanna, R., Witt, M., Anwer, M. K., Agarwal, S. and Koch, B. P.: Spectroscopic characterization of fulvic acids extracted from the rock exudate Shilajit. Org. Geochem.39 (2008) 1719–1724. 10.1016/j.orggeochem.2008.08.009Suche in Google Scholar
34. Yu, J. L., Yang, F., Liu, Z. H., Liu, Y. N. and Li, G.: Preparation and characterization of C10-C14 alkyl cellulose ester sulfate surfactant. J. Surfactants. Deterg.17 (2014) 647–653. 10.1007/s11743-013-1506-9Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener