Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
-
Gang Wang
, Ming Zhou , Shenying Ding , Zhou Huang , Ze Zhang and Sisi Li
Abstract
As a new type of high effective surfactant, aliphatic alcohol ether sulfonate has widely application prospects in the process of tertiary oil recovery. So, the theoretical analysis of synthesis of aliphatic alcohol ether sulfonate has played a very important role in the process of its development. After the first patent about the preparation of a fatty alcohol ether sulfonate surfactant was reported in 1938, there were several methods to synthesize alcohol ether sulfonate surfactants with different structure. Sulfonated alkylation, one of the synthesis methods, is introduced in this paper. The synthesis principle of alcohol ether sodium sulfonate was analyzed by three step reactions – synthesis of PTGE, ring opening reaction and sulfonation reaction. Synthesis principle of PTGE includes acid catalysis, phase-transfer catalysis, side reaction of the synthesis of glycerol ether and reaction of PTGE outcome. Ring opening reaction includes two reactions of acid catalysis and alkali catalysis.
Kurzfassung
Aliphatische Alkoholethersulfonate finden als neue Klasse hocheffektiver Tenside viele Anwendungsperspektiven in der tertiären Erdölförderung. Daher spielt die theoretische Analyse der Synthese von aliphatischen Alkoholethersulfonaten eine sehr wichtige Rolle in dem Entwicklungsprozess. Nachdem im Jahr 1938 das erste Patent über die Herstellung von Fettalkoholethersulfonaten gemeldet wurde, gab es verschiedene Methoden für die Synthese von Alkoholethersulfonaten mit unterschiedlichen Strukturen. Eine der Synthesemethoden, die sulfonierte Alkylierung, wird in diesem Beitrag vorgestellt. Der Synthesevorgang wurde analysiert als eine Reaktion mit drei Stufen: Synthese von PTGE, Ringöffnungsreaktion und Sulfonierungsreaktion. Die Synthese von PTGE enthält die saure Katalyse, die Phasentransferkatalyse, die Seitenreaktion der Synthese des Glycerolethers und die Reaktion zum PTGE. Die Ringöffnungsreaktion besteht aus einer säurekatalysierten und einer alkalikatalysierten Reaktion.
References
1. Zhang, Y. M., Niu, J. P. and Li, Q. X.: Synthesis and properties evaluation of sodium fatty alcohol polyoxyethylene ether sulfonate. Tenside Surfactants Detergents47 (2010) 34–39. 10.3139/113.110051Search in Google Scholar
2. Zhao, J. Z., Zhou, M., Wang, X. and Yang, Y.: Synthesis and surface active properties of dimeric Gemini sulfonate surfactants. Tenside Surfactants Detergents51 (2014) 26–31. 10.3139/113.110282Search in Google Scholar
3. Blyakhman, E. M.: Formation mechanism for glycidyl ethers of glycols. Zhurnal Organicheskoi Khimii.3 (1967) 1423–1430.Search in Google Scholar
4. Yu, H., Wang, L., Huo, J. and Tan, C. L. Q.: Synthesis of glycidyl ether of poly-(bisphenol-A 1,1′-ferrocene dicarboxylate) and its electrochemical behavior. Designed Monomers and Polymers12 (2009) 305–313. 10.1163/156855509X448271Search in Google Scholar
5. Mckenna, J. M., Wu, T. K. and Pruckmayr, G.: Macrocyclic tetrahydrofuran oligomers. Macromolecules.10 (1977) 877–879. 10.1021/ma60058a036Search in Google Scholar
6. Zhao, Q., Jie, S., Liu, B. and He, J.: Anion exchange cycle of catalyst in liquid-liquid phase-transfer catalysis reaction: Novel autocatalysis. Chemical Engineering Journal262 (2015) 756–765. 10.1016/j.cej.2014.09.113Search in Google Scholar
7. Urata, K., Yano, S., Kawamata, A., Takaishi, N. and Inamoto, Y.: A convenient synthesis of long-chain 1-o-alkyl glyceryl ethers. Journal of the American Oil Chemists Society65 (1988) 1299–1302. 10.1007/BF02542409Search in Google Scholar
8. Kang, H. C., Lee, B. M., Yoon, J. and Yoon, M.: Improvement of the phase-transfer catalysis method for synthesis of glycidyl ether. Journal of the American Oil Chemists Society78 (2001) 423–429. 10.1007/s11746-001-0279-ySearch in Google Scholar
9. Lei, T., Wu, X. X. and Wang, G. Y.: Synthesis of ethylene methoxyethanol glycidyl ether via phase transfer catalytic. Shanxi chemical industry27 (2007) 6–8.Search in Google Scholar
10. Laschewsky, A., Wattebled, L., Arotçaréna, M., Habibjiwan, J. L. and Rakotoaly, R. H.: synthesis and properties of cationic oligomeric surfactants. Langmuir.21 (2005) 7170–7179. 10.1021/la050952oSearch in Google Scholar PubMed
11. Jin, F. L., Li, X. and Park, S. J.: Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry29 (2015) 1–11. 10.1016/j.jiec.2015.03.026Search in Google Scholar
12. Kas'Yan, L. I., Okovityi, S. I. and Kas'Yan, A. O.: Reactions of Alicyclic Epoxy Compounds with Nitrogen-Containing Nucleophiles. Russian Journal of Organic Chemistry40 (2004) 1–34. 10.1023/B:RUJO.0000034906.46654.ffSearch in Google Scholar
13. Lin, L. H., Wang, C. C., Chen, K. M. and Lin, P. C.: Synthesis and physicochemical properties of silicon-based Gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects436 (2013) 881–889. 10.1016/j.colsurfa.2013.08.036Search in Google Scholar
14. Zhou, M., Xia, L., He, Y., Zhang, L., Qiao, X. and Zhong, X.: Synthesis of new Salt-Resistant sulfonate Gemini surfactants with hydroxyl groups. Journal of Surfactants and Detergents18 (2015) 303–308. 10.1007/s11743-014-1667-1Search in Google Scholar
15. Wang, X., Yan, F., Li, Z., Zhang, L., Zhao, S., An, J. and Yu, J.: Synthesis and surface properties of several nonionic-anionic surfactants with straight chain alkyl-benzyl hydrophobic group. Colloids and Surfaces A302 (2007) 532–539. 10.1016/j.colsurfa.2007.03.026Search in Google Scholar
16. Zhou, M., Zhao, J., Wang, X., Jing, J. and Zhou, L.: Synthesis and characterization of novel surfactants 1,2,3-tri(2-oxypropylsulfonate-3-alkylether-propoxy) propanes. Journal of Surfactants and Detergents16 (2013) 665–672. 10.1007/s11743-013-1442-8Search in Google Scholar
17. Zhou, M., Zhao, J., Wang, X. and Yang, Y.: Research on surfactant flooding in high-temperature and high-salinity reservoir for enhanced oil recovery. Tenside Surfactants Detergents. 50 (2013) 175–181. 10.3139/113.110245Search in Google Scholar
18. Guo, X., Meng, X., Du, Z., Zhou, M., Xing, T. and Wang, C.: Studies on foam flooding for high salinity reservoirs after polymer flooding. Oil Gas European Magazine, 41 (2015) 103–109. 10.1016/j.petrol.2015.09.020Search in Google Scholar
19. Guo, J., Xiao, S., Yang, Z., Cao, J., Wang, L. and Yin, Y.: Synthesis of temperature-resistant and salttolerant surfactant SDB-7 and its performance evaluation for Tahe Oilfield flooding (China). Petroleum Science11 (2014) 584–589. 10.1007/s12182-014-0375-9Search in Google Scholar
20. Iglauer, S., Wu, Y., Shuler, P., Tang, Y. and Iii, W. A. G.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum Science & Engineering71 (2010) 23–29. 10.1016/j.petrol.2009.12.009Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener