Eco-favourable Mobile Phase in Thin Layer Chromatographic Analysis of Surfactants: Resolution of Coexisting Alkyl Dimethylbenzyl Ammonium Chloride, Cetyltrimethyl Ammonium Bromide and Triton X 100
-
Ali Mohammad
Abstract
A thin-layer chromatographic system comprising of silica gel as stationary phase and a mixture of methanol, 0.1 % aqueous sodium thiocyanate, acetone and ethyl acetate in 7 : 3 : 2 : 3 ratio as eco-favourable mobile phase has been found most efficient for the separation of ternary mixture of surfactants (alkyldimethylbenzylammonium chloride (ADBAC) + cetyltrimethylammonium bromide (CTAB) + Triton X 100). The separation pattern has been presented as densitogram. Chromatographic parameters like ΔRF, separation factor (α) and resolution (RS) for the separation have been calculated. The effect of the presence of foreign substances such as metal cations, metal anions, amino acids and vitamins as impurities on the separation has been examined. The mobility trend of the separated surfactants was also examined by replacing methanol with other alcohols. The detection limits for ADBAC, CTAB and Triton X 100 have been determined. The proposed method has been successfully applied for the identification of ADBAC in the household cleaning product “Lizol”.
Kurzfassung
Für die Trennung ternärer Tensid-Mischungen (Alkyldimethylbenzylammoniumchlorid (ADBAC) + Cetyltrimethylammoniumbromid (CTAB) + Triton X 100) wurde ein sehr effizientes dünnschichtchromatographisches System bestehend aus Kieselsäuregel als stationäre Phase und der Mischung aus Methanol, wässriger Natriumthio-cyanat-lösung (0.1 %), Aceton und Ethylacetat im Verhältnis 7 : 3 : 2 : 3 als umweltfreundliche mobile Phase gefunden. Das Trennungsbild wurde als Densitogramm aufgezeichnet. Die chromatographischen Größen wie ΔRF, der Trennungsfaktor (α) und die Auflösung der Trennung (RS) wurden berechnet. Der Einfluss anwesender Fremdsubstanzen wie Metallkationen, Metallanionen, Aminosäuren und Vitamine auf die Trennung wurde untersucht. Der Mobilitätsverlauf der getrennten Tenside wurde bestimmt, indem das Methanol gegen andere Alkohole ersetzt wurde. Die Detektionsgrenzen für ADBAC, CTAB Triton X 100 wurden bestimmt. Das Verfahren wurde erfolgreich zur Identifikation von ADBAC in dem Haushaltsreiniger „Lizol“ eingesetzt.
References
1. Schramm, L. L., Stasiuk, E. N. and Marangoni, G.: Surfactants and their applications, Annu. Rep. Prog. Chem. Sect C99 (2003) 3–48. 10.1039/b208499fSearch in Google Scholar
2. Rosen, M. J.: Surfactants and interfacial phenomena, 3rd edn.Wiely, NewYork (2004). 10.1002/0471670561Search in Google Scholar
3. Mohammad, A. and Bhawani, S. A.: LC separation of co-existing cetylpyridinium chloride, tetradecyltrimethylammonium bromide and dodecyltrimethylammonium bromide on silica TLC plates with aqueous-organic eluents, Chromatographia67 (2008) 659–663. 10.1365/s10337-008-0552-3Search in Google Scholar
4. Kralova, I. and Sjoblom, J.: Surfactants used in food industry: A Review, J. Disper. Sci. Technol.30 (2009) 1363–1383. 10.1080/01932690902735561Search in Google Scholar
5. Haldar, J., Kondaiah, P. and Bhattacharya, S.: Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups Leads to impressive antibacterial activity, J. Med. Chem.48 (2005) 3823–3831. 10.1021/jm049106lSearch in Google Scholar PubMed
6. Moon, S. Y., Kusunose, T. and Sekino, T.: CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution, Mater. Lett.63 (2009) 2038–2040. 10.1016/j.matlet.2009.06.047Search in Google Scholar
7. Rogers, S. O. and Bendich, A. J.: Extraction of total cellular DNA from plants, algae and fungi, Plant molecular biology manual (1994) 183–190. 10.1007/978-94-011-0511-8_12Search in Google Scholar
8. Fazlara, A. and Ekhtelat, M.: The disinfectant effects of benzalkonium chloride on some important foodborne pathogens, American-Eurasian J. Agric. & Environ. Sci.12 (2012) 23–29; ISSN: 1818-6769.Search in Google Scholar
9. http://en.wikipedia.org/wiki/Benzalkonium_chloride.Search in Google Scholar
10. Zoller, U.: Handbook of detergents Part E: Application, CRC press Taylor and Francis group (2008); ISBN-13: 978-1574447576.10.1201/9781420018165Search in Google Scholar
11. Morin, C. J., Geulin, L., Mofaddel, N., Desbene, A. M. and Desbene, P. L.: Analysis of neutral surfactants by non-aqueous medium capillary electrophoresis hyphenated to mass spectrometry (ion trap), J. Chromatogr. A1198–1199 (2008) 226–231. 10.1016/j.chroma.2008.05.039Search in Google Scholar PubMed
12. Kharitonova, T., Rudnev, A. and Ivanova, N.: Capillary zone electrophoresis for surfactants analysis in aqueous media, Prog. Coll. Poly. Sci.125 (2004) 184–188. 10.1007/b14298Search in Google Scholar
13. Grob, M. and Steiner, F.: Application of nonaqueous capillary electrophoresis to the simultaneous analysis of anionic surfactants, Electrophoresis23 (2002) 1921–1927. ELPS1921>3.0.CO;2-P. 10.1002/1522-2683(200206)23:12<1921::AIDSearch in Google Scholar
14. Schmitt, T. M.: Analysis of surfactants second edition, Surfactants science series 96 (2001); ISBN-13: 978-0824704490.Search in Google Scholar
15. Cullum, D. C.: Introduction to surfactant analysis (1994). 10.1007/978-94-011-1316-8Search in Google Scholar
16. Wulf, V., Wienand, N., Wirtz, M., Kling, H. S., Gäb, S. and Schmitz, O. J.: Analysis of special surfactants by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry, J. Chromatogr.1217 (2010) 749–754. 10.1016/j.chroma.2009.11.093Search in Google Scholar
17. Ahel, M. and Giger, W.: Determination of nonionic surfactants of the alkylphenol polyethoxylate type by high-performance liquid chromatography, Anal. Chem.57 (1985) 2584–2590. 10.1021/ac00290a035Search in Google Scholar
18. Norberg, J., Thordarson, E., Mathiasson, L. and Jonsson, J. A.: Microporous membrane liquid–liquid extraction coupled on-line with normal-phase liquid chromatography for the determination of cationic surfactants in river and waste water, J. Chromatogr. A869 (2000) 523–529. 10.1016/S0021-9673(99)01219-4Search in Google Scholar
19. Jandera, P., Holcapek, M. and Theodoridis, G.: Investigation of chromatographic behaviour of ethoxylated alcohol surfactants in normal-phase and reversed-phase systems using high-performance liquid chromatography–mass spectrometry, J. Chromatogr. A813 (1998) 299–311. 10.1016/S0021-9673(98)00359-8Search in Google Scholar
20. Mohammad, A. and Bhawani, S. A.: Silica thinl-layer chromatographic studies of surfactants with mixed aqueous-organic eluents containing thiourea: simultaneous separation of co-existing cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide, and polyoxyethylene (20) sorbitan monolaurate, J. Chromatogr Sci.46 (2008) 298–303. 10.1093/chromsci/46.4.298Search in Google Scholar
21. Bhawani, S. A., Sulaiman, O., Hashim, R. and Ibrahim, M. N. M.: Analysis of surfactants by thin -layer chromatography: A review, Tenside Surfact. Det.47 (2010) 73–80. 10.3139/113.110054Search in Google Scholar
22. Ymamoto, K. and Motomizu, S.: Spectrophotometric method for the determination of ionic surfactants by flow-injection analysis with acidic dyes, Anal. Chim. Acta246 (1991) 333–339. 10.1016/S0003-2670(00)80969-1Search in Google Scholar
23. Patel, R. and Patel, K. S.: Simple and specific method for flow injection analysis determination of cationic surfactants in environmental and commodity samples, Talanta48 (1999) 923–931. 10.1016/S0039-9140(98)00306-3Search in Google Scholar
24. Barco, M., Planas, C., Palacios, O., Ventura, F., Rivera, J. and Caixach, J.: -Simultaneous quantitative analysis of anionic, cationic, and nonionic surfactants in water by electrospray ionization mass spectrometry with flow injection analysis, Anal. Chem.75 (2003) 5129–5136. 10.1021/ac020708rSearch in Google Scholar
25. Schroder, H. F.: Tracing of surfactants in the biological wastewater treatment process and the identification of their metabolites by flow injection-mass spectrometry and liquid chromatography-mass spectrometry and tandem mass spectrometry, J. Chromatogr. A926 (2001) 127–150. 10.1016/S0021-9673(01)00941-4Search in Google Scholar
26. Petrovic, M. and Barcelo, M.: Analysis of ethoxylated nonionic surfactants and their metabolites by liquid chromatography/atmospheric pressure ionization mass spectrometry, J. Mass Spectrom.36 (2001) 1173–1185. 10.1002/jms.234Search in Google Scholar
27. Castillo, M., Ventura, F. and Barceló, D.: Sequential solid phase extraction protocol followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the trace determination of non ionic polyethoxylated surfactants in tannery wastewaters, Waste Manage.19 (1999) 101–110. 10.1016/S0956-053X(99)00004-5Search in Google Scholar
28. Nitschke, L., Muller, R., Metzner, G. and Huber, L.: Trace analysis of cationic surfactants in water using HPLC with conductometric detection, Fresenius J. Anal. Chem.342 (1992) 711–713. 10.1007/BF00321861Search in Google Scholar
29. Cirin, D. M., Posa, M. M., Krstonosic, V. S. and Milanovic, M. L.: Conductometric study of sodium dodecyl sulfate–nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) mixed micelles in aqueous solution, Hem. Ind.66 (2012) 21–28. 10.2298/HEMIND110612059CSearch in Google Scholar
30. Jurado, E., Serrano, M. F., Olea, J. N., Luzo'n, G. and Lechuga, M.: Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests, Chemosphere65 (2006) 278–285. 10.1016/j.chemosphere.2006.02.044Search in Google Scholar
31. Shimoishi, Y. and Miyata, H.: Spectrophotometric determination of anionic surfactants in tap and river waters with 1-(10-bromodecyl)-4-(4-aminonaphthylazo)-pyridinium bromide, Fresen. J. Anal. Chem. Indian338 (1990) 46–49. 10.1007/BF00322783Search in Google Scholar
32. Ćosović, B. and Vojvodić, V.: Voltammetric Analysis of Surface Active Substances in Natural Seawater, Electroanal.10 (1998) 429–434. 10.1002/(SICI)1521-4109(199805)10:6<429::AIDELAN429>3.0.CO;2-7Search in Google Scholar
33. Gerlache, M., Kauffmann, J. M., Quarin, G., Vire, J. C., Bryant, G. A. and Talbot, J. M.: Electrochemical analysis of surfactants: An overview, Talanta43 (1996) 507–519. 10.1016/0039-9140(95)01787-9Search in Google Scholar
34. Desbene, P. L., Desmazieres, B. and Basselier, J. J.: Polarographic detection of non-ionic surfactants analyzed by reversed-phase partition chromatography, J. Chromatogr. A465 (1989) 69–74. 10.1016/S0021-9673(01)83573-1Search in Google Scholar
35. Gartshore, J., Lim, Y. C. and Cooper, D. G.: Quantitative analysis of biosurfactants using Fourier Transform Infrared (FT-IR) spectroscopy, Biotechnol Lett.22 (2000) 169–172. 10.1023/A:1005670031432Search in Google Scholar
36. Coveney, F. M., Strange, J. H. and Smith, E. G.: The measurement of electrophoretic mobility in surfactant systems using NMR, Molecular Physics75 (1992) 127–137. 10.1080/00268979200100101Search in Google Scholar
37. Corno, C., Platone, E. and Ghelli, S.: 13C NMR analysis of polyoxyethylenated surfactants – determination of critical micellar concentration, Colloid Polym. Sci.262 (1984) 667–669. 10.1007/BF01452460Search in Google Scholar
38. Tesic, Z. and Opsenica, D. M.: Inorganic ion exchangers in paper and thin-layer chromatographic separations, in: Inamuddin, and Luqman, M. (Ed.) chapter 15, Ion Exchange Technology II: Application, SpringerNetherlands (2012) 365–389. 10.1007/978-94-007-4026-6_15Search in Google Scholar
39. Dhote, S. S., Deshmukh, L. and Paliwal, L.: Heavy metal ion separationon thin layer of impregnated carbamide-formaldehyde polymer, J. Chromat. Separation Techniq.3 (2012) 124. 10.4172/2157-7064.1000124Search in Google Scholar
40. Cserhati, T. and Somogyi, A.: Thin-layer chromatographic separation of some tributylphenyl ethylene oxide oligomers according to the length of the ethylene oxide chain, J. Chromatogr. A446 (1998) 17–22. 10.1016/S0021-9673(00)94413-3Search in Google Scholar
41. Cross, J.: Anionic surfactants: Analytical chemistry. Surfactants Science Series 73 (1998); ISBN: 0-8247-0166-6.Search in Google Scholar
42. Mohammad, A., Siddiq, A., Moheman, A. and El-Desoky, G. E.: Aqueous urea solution promoted resolution of five-component mixture of amino acids on silica TLC plates, J. Planar. Chromatrg. – Mod. TLC26 (2013) 31–36. 10.1556/JPC.26.2013.1.5Search in Google Scholar
43. Mohammad, A., Haq, N. and Siddiq, A.: Resolution of multicomponent mixture of amino acids using environmentally benign eluents: A green chromatographic approach, J. Sep. Sci.33 (2010) 3619–3626. 10.1002/jssc.201000543Search in Google Scholar PubMed
44. Siddiq, A., Ansari, M. O., Mohammad, A., Mohammad, F. and El-Desoky, G. E.: Synergistic effect of polyaniline modified silica gel for highly efficient separation of non resolvable amino acids, Int. J. Polym. Mater. Polym. Biomater63 (2013) 277–281. 10.1080/00914037.2013.830255Search in Google Scholar
45. Neuman, R. C.: Addition and substitution reactions of carbonyl compounds. Organic Chemistry, Chapter 16, 1992. (9-11/94)(2,3/97)(12/05)(1-6/06)Search in Google Scholar
© 2015, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review Article
- How to Improve Sustainability and Environmentally Friendly Behaviour in Automatic Dishwashing? Example: Germany
- Physical Chemistry
- αs-Casein-PE6400 Mixtures: Thermodynamics of Micelle Formation
- Effect of Alcohols on Phase Stability of Ionic Liquid Microemulsions
- The Effect on Solution Properties of Replacing a Hydrogen Atom with a Methyl Group in a Surfactant
- Application
- New Approach of Sucrose Myristate as a Promising Penetration Enhancer in Dermal Preparations
- Environmental Chemistry
- Identification of Non-ionic Surfactants in Elements of the Aquatic Environment
- Synthesis
- Synthesis and Properties of 1,2,3,4-Butanetetracarboxylic Acid Type Gemini Surfactants with Semifluoroalkyl Chain as Hydrophobic Group
- Solvent Free Synthesis of Four Cationic Surfactants: Evaluation of Their Corrosion Inhibition Properties on Zinc Phosphate Conversion Coating on Mild Steel
- Synthesis and Spectrophotometric Study of Toxic Metals Extraction by Novel Thio-Based Non-Ionic Surfactant
- Analysis
- Eco-favourable Mobile Phase in Thin Layer Chromatographic Analysis of Surfactants: Resolution of Coexisting Alkyl Dimethylbenzyl Ammonium Chloride, Cetyltrimethyl Ammonium Bromide and Triton X 100
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review Article
- How to Improve Sustainability and Environmentally Friendly Behaviour in Automatic Dishwashing? Example: Germany
- Physical Chemistry
- αs-Casein-PE6400 Mixtures: Thermodynamics of Micelle Formation
- Effect of Alcohols on Phase Stability of Ionic Liquid Microemulsions
- The Effect on Solution Properties of Replacing a Hydrogen Atom with a Methyl Group in a Surfactant
- Application
- New Approach of Sucrose Myristate as a Promising Penetration Enhancer in Dermal Preparations
- Environmental Chemistry
- Identification of Non-ionic Surfactants in Elements of the Aquatic Environment
- Synthesis
- Synthesis and Properties of 1,2,3,4-Butanetetracarboxylic Acid Type Gemini Surfactants with Semifluoroalkyl Chain as Hydrophobic Group
- Solvent Free Synthesis of Four Cationic Surfactants: Evaluation of Their Corrosion Inhibition Properties on Zinc Phosphate Conversion Coating on Mild Steel
- Synthesis and Spectrophotometric Study of Toxic Metals Extraction by Novel Thio-Based Non-Ionic Surfactant
- Analysis
- Eco-favourable Mobile Phase in Thin Layer Chromatographic Analysis of Surfactants: Resolution of Coexisting Alkyl Dimethylbenzyl Ammonium Chloride, Cetyltrimethyl Ammonium Bromide and Triton X 100