Synthesis and Properties of Guerbet Hexadecyl Sulfate
-
Chengbin Huang
Abstract
Guerbet hexadecyl sulfate (C16GS) was synthesized by sulfating Guerbet hexadecyl alcohol (C16GA) with SO3 as the sulfating agent and dichloroethane as the solvent. The structure of C16GS and C16GA was confirmed by IR and NMR. Their surface tension, wetting, emulsifying and foaming properties were tested and compared with that of sodium dodecyl sulfate (SDS). It is found that C16GS shows better surface activity than SDS, with both the critical micelle concentration (CMC) and surface tension at CMC (γCMC) of C16GS lower than that of SDS. Contact angle data demonstrated that C16GS exhibits better wetting ability on Teflon surface than SDS. As concentration increases, both the contact angle of C16GS and SDS decreases first and then remains constant. The only exception is the 0 s contact angle of C16GS decreases first and then increases. The contact angle of SDS becomes the smallest and reaches a plateau at the concentration of CMC. However, the contact angle of C16GS reaches the smallest and levels off at the concentration of 2.5 g/L which is much higher than the CMC of C16GS. C16GS also has a better performance of emulsifying soybean oil and paraffin than SDS. As for the foaming property, C16GS has a similar foamability to SDS, but shows worse foam stability than SDS.
Kurzfassung
Guerbet-Hexadecylsulfat (C16GS) wurde durch Sulfatierung von Guerbet-Hexadecylalkohol (C16GA) mit SO3 als Sulfatierungsreagens in Dichlorethan als Lösemittel synthetisiert. Die Strukturen von C16GS und C16GA wurde mittels IR und NMR abgesichert. Ihre Oberflächenspannung, Benetzungs-, Emulgier- und Schäumeigenschaften wurden untersucht und mit denen von Natriumdodcecylsulfat (SDS) verglichen. Es konnte gezeigt werden, dass C16GS eine bessere Oberflächenaktivität besitzt als SDS, sowohl die kritische Mizellenbildungskonzentration (CMC) als auch die Oberflächensapnnung an der CMC (γCMC) von C16GS waren niedriger als die von SDS. Die Kontaktwinkelmessungen zeigten, dass C16GS eine bessere Benetzung von Teflonoberflächen aufweist als SDS. Mit steigender Konzentration fielen sowohl der Kontaktwinkel von C16GS als auch der von SDS zuerst ab und nahmen dann wieder zu. Der Kontaktwinkel von SDS nahm immer weiter ab und erreichte an der CMC ein Plateau. Der Kontaktwinkel von C16GS dagegen erreicht ein Minimum und stieg bei der Konzentration von 2.5 g/L, die deutlich oberhalb der CMC von C16GS liegt, wieder an. C16GS kann zudem Sojaöl und Paraffin besser emulgieren als SDS. Es besitzt ein dem SDS vergleichbares Schaumvermögen, zeigt aber im Vergleich zu SDS eine schlechtere Schaumstabilität.
References
1. O'Lenick, Jr.A. J.: Journal of Surfactants and Detergents4 (2001) 311. 10.1007/s11743-001-0185-1.Search in Google Scholar
2. Jin, Z. Q., Wang, H. H. and Yu, J. Y.: China Surfactant Detergent & Cosmetics.32 (2002) 4. 10.3969/j.issn.1001-1803.2002.05.002.Search in Google Scholar
3. Zheng, Y. C., Han, D., Yang, P. H. and Wang, H. Z.: China Surfactant Detergent & Cosmetics36 (2006) 137. 10.3969/j.issn.1001-1803.2006.03.001.Search in Google Scholar
4. Varadaraj, R., Bock, J., Valint, Jr.P., Zushma, S. and Thomas, R.: Journal of Physical Chemistry95 (1991) 1671. 10.1021/j100157a033.Search in Google Scholar
5. Varadaraj, R., Bock, J., Valint, Jr.P., Zushma, S. and Brons, N.: Journal of Physical Chemistry95 (1991) 1677. 10.1021/j100157a034.Search in Google Scholar
6. Varadaraj, R., Bock, J., Valint, Jr.P., Zushma, S. and Brons, N.: Journal of Physical Chemistry95 (1991) 1679. 10.1021/j100157a035.Search in Google Scholar
7. Jin, Z. Q., Xu, Z. C., Gong, Q. T., Zhao, S. and Yu, J. Y.: Journal of Dispersion Science and Technology32 (2011) 898. 10.1080/01932691003756720.Search in Google Scholar
8. Zhu, R. X., Jin, Z. Q., Zhao, S. and Yu, J. Y.: Fine Chemicals22 (2005) 31. 10.3321/j.issn:1003-5214.2005.z1.009.Search in Google Scholar
9. Qiao, W. H., Cui, Y. C., Zhu, Y. Y. and Cai, H. Y.: Fuel.102 (2012) 746. 10.1016/j.fuel.2012.05.046.Search in Google Scholar
10. Qiao, W. H., Cui, Y. C., Zhu, Y. Y. and Cai, H. Y.: Tenside Surfactants Detergents49 (2012) 252. 10.3139/113.110190Search in Google Scholar
11. Ge, H., Sun, L. X. and Wang, J.: Speciality Petrochemicals1 (2005) 14. 10.3969/j.issn.1003-9384.2005.01.005Search in Google Scholar
12. Li, M., Li, Q. X., Hou, S. Z., Zhang, M. H. and Li, Y. L.: CN103272608A.Search in Google Scholar
13. Zhao, G. X. and Zhu, B. Y.: Principles of Surfactant Action, China light industry press, 2003.Search in Google Scholar
14. Song, Y. B., Li, Q. X. and Li, Y. L.: Tenside Surfactants Detergents49 (2012) 390. 10.3139/113.110207.Search in Google Scholar
15. Dahanayake, M., Cohn, A. W. and Rosen, M. J.: Journal of Physical Chemistry90 (1986) 2413. 10.1021/j100402a032.Search in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid