Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
-
Ganesan Sekaran
Abstract
Chemo-Autotrophic Activated Carbon Oxidation (CAACO) system was used for the treatment of tannery waste water. It employs activated carbon-immobilised sulphate reducing bacteria for the removal of dissolved organics in wastewater under oxidizing environment. The wastewater characteristics such as COD (1689 mg/L), BOD (377 mg/L), sulphate (915 mg/L) and sulphide (184 mg/L) were applied at an hydraulic loading rate of 0.7376 m3/m3/day and surface loading rate of 0.2438 m3/m2/day to CAACO reactor at 30°C and at atmospheric pressure. The removal of COD, BOD, sulphide and sulphate was 87%, 96%, 100% and 40% respectively after 2 hours of oxidation. The oxidation of dissolved organics in wastewater was accomplished by passing air at flow rate 3 L/min and at pressure 0.5 kg/cm2 through CAACO reactor. The effect of variables COD loading, O2/COD, O2/(COD-BODL), COD/S2–, (COD-BODL)/S2– and [(COD-BODL)i–(COD-BODL)e]/S2– on rate and percentage removal of COD from tannery wastewater was determined.
Kurzfassung
Ein chemo-autotrophes Oxidationssystem mit aktiviertem Kohlenstoff (Chemo-Autotrophic Activated Carbon Oxidation (CAACO) system) wurde zur Behandlung von Gerbereiabwässern untersucht. Das System nutzt an aktiviertem Kohlenstoff immobilisierte, sulfatreduzierende Bakterien, um die in Abwässern gelösten organischen Verbindungen unter Oxidationsbedingungen zur entfernen. Für Abwässer charakteristische Größen wie COD (1689 mg/L), BOD (377 mg/L), Sulfat (915 mg/L) und Sulfid (184 mg/L) wurden bei einer hydraulischen Ladegeschwindigkeit von 0.7376 m3/m3/Tag und einer Oberflächenbeladunggeschwindigkeit von 0.2438 m3/m2/Tag in dem CAACO-Reaktor unter atmosphärischem Druck bei 30°C eingestellt. Nach zweistündiger Oxidation betrug die Entferung von COD, BOD, Sulfid und Sulfat 87%, 96%, 100% bzw. 40%. Die Oxidation der im Abwasser gelösten organischen Verbindungen wurde begleitet von durch den CAACO-Reaktor strömender Luft, deren Geschwindigkeit bei einem Druck von 0,5 kg/cm2 3 L/min betrug. Der Einfluss der COD-Beladung, sowie der der Verhältnisse O2/COD, O2/(COD-BODL), COD/S2−, (COD-BODL)/S2− und [(COD-BODL)i–(COD-BODL)e]/S2− auf die Geschwindigkeit und die prozentuale COD-Entfernung aus den Gerbereiabwässern wurde bestimmt.
References
1. Bringmann, G. and Kuhn, R.: Water Res.14 (1980) 231–241.10.1016/0043-1354(80)90093-7Search in Google Scholar
2. Chou, W. L., Speece, R. E., Siddiqi, R. H. and Mckeon, K.: Prog. Water Tech.10 (1978) 545–558.Search in Google Scholar
3. Jurd, L., and Manners, G. D.: J. Agric. Food Chem.28 (1980) 183–188.10.1021/jf60228a009Search in Google Scholar
4. Gupta, V. K., Jain, R. and Varshney, S.: J. Hazard Mater.142 (2007a) 443–448.10.1016/j.jhazmat.2006.08.048Search in Google Scholar
5. Gupta, V. K., Ali, I. and Saini, V. K.: J. Colloid Interface Sci.315 (2007b) 87–93.10.1016/j.jcis.2007.06.063Search in Google Scholar
6. Gupta, V. K., Mittal, A., Jain, R., Mathur, M. and Sikarwar, S.: J. Colloid Interface Sci.303 (1) (2006a) 80–86.10.1016/j.jcis.2006.07.036Search in Google Scholar
7. Gupta, V. K., MittalA., Gajbe, V. and Mittal, J.: Ind. Eng. Chem. Res.45 (2006b) 1446–1453.10.1021/ie051111fSearch in Google Scholar
8. Ruckdeschet, G., Renner, G. and Schwarz, K.: Appl. Environ. Microbiol.53 (11) (1987)2689–2692.Search in Google Scholar
9. Seo, G. T., Ohagaki, S. and Suzuki, Y.: Water Science Technol. 35 (3) (1977) 163–170.10.1016/S0273-1223(97)00127-3Search in Google Scholar
10. Locher, H. H.: Ph. D. Thesis no. 9434, (1991) Swiss Federal Institute of technology, Zurich.Search in Google Scholar
11. Sieera-Aalvarex, R. and Lettinga, G.: (1990) Ph. D. Thesis.Search in Google Scholar
12. Parken, G. E., Speece, R. E. and Yang, C. H. T., Koether, W. M.: J. Water. Pollut. Control. Fed.58 (1983) 44–52.Search in Google Scholar
13. Gupta, V. K. and Rastogi, A.: J. Hazard Mater.154 (2008a) 347–354.10.1016/j.jhazmat.2007.10.032Search in Google Scholar PubMed
14. Gupta, V. K. and Rastogi, A.: Colloid Surfaces B: Biointerfaces64 (2008b) 170–17810.1016/j.colsurfb.2008.01.019Search in Google Scholar PubMed
15. Gupta, V. K. and Rastogi, A.: J. Hazard Mater.153 (2008c) 759–76610.1016/j.jhazmat.2007.09.021Search in Google Scholar PubMed
16. Haque, R.: Dynamics, exposure and Hazard Assessment of Toxic chemicals, Ann. Arbor. Science, (1980) Ann. Arbor.Search in Google Scholar
10. Bickerton, J., Macnab, J., Scinner, I. and Pilcher, G.: Thermochime Acta222 (1993) 69–71.10.1016/0040-6031(93)80540-QSearch in Google Scholar
17. Whitham, G. H.: Organic sulphur chemistry, Oxford University Press (1995) New York, NY.Search in Google Scholar
18. Gupta, V. K., Goyal, R. N. and Sharma, R. A.: Int. J. Electrochem. Sci.4 (2009a) 156–172Search in Google Scholar
19. Gupta, V. K. and Rastogi, A.: J. Hazard Mater.163 (2009b) 396–40210.1016/j.jhazmat.2008.06.104Search in Google Scholar
20. Gupta, V. K., Goyal, R. N. and Sharma, R. A.: Anal. Chim. Acta.647 (2009c) 66–7110.1016/j.aca.2009.05.031Search in Google Scholar
21. Sekaran, G., Chitra, K. and Mariappan, M.: J. Environ. Sci. Health A31 (3) (1996) 579–598.Search in Google Scholar
22. Widdel, F. and Pfennig, N.: Arch. Microbiol.129 (1981) 395–400.10.1007/BF00406470Search in Google Scholar
23. Reemtsma, T. and Jekel, M.: Water Res. 31 (5) (1997) 1035–1046.10.1016/S0043-1354(96)00382-XSearch in Google Scholar
24. Zaid, I. S. A.: Grusenmeyer, S. and Verstraete, W.,: Appl. Environ. Microbiol.51 (3) (1986) 571–579Search in Google Scholar
25. Jolley, R. A. F.: Environ. Technol.6 (1985) 1–10.10.1080/09593338509384313Search in Google Scholar
26. Millero, F. J. H., Fernandez, and Garnett, M.: Environ. Sci. Technol.11 (1977) 1114–1120.10.1021/es60135a009Search in Google Scholar
© 2012, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties
- Development and Validation of Micellar-Enhanced Spectrofluorimetric Method for Determination of Sulpiride in Pharmaceutical Formulations and Biological Samples
- Influence of Heat Treatment on the Performance of Polymers as Gypsum (CaSO4 · 2H2O) Scale Inhibitors for Industrial Water Applications
- Environmental Chemistry
- Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
- Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
- Physical Chemistry
- Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants
- Mixed Micelles Containing Sodium Laurate: Effect of Chain Length, Polar Head Group, and Added Salt
- Synthesis
- Investigating of Synthesis Parameters, Kinetics and Pilot Plant of Sodium Sarcosinate
- Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties
- Development and Validation of Micellar-Enhanced Spectrofluorimetric Method for Determination of Sulpiride in Pharmaceutical Formulations and Biological Samples
- Influence of Heat Treatment on the Performance of Polymers as Gypsum (CaSO4 · 2H2O) Scale Inhibitors for Industrial Water Applications
- Environmental Chemistry
- Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
- Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
- Physical Chemistry
- Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants
- Mixed Micelles Containing Sodium Laurate: Effect of Chain Length, Polar Head Group, and Added Salt
- Synthesis
- Investigating of Synthesis Parameters, Kinetics and Pilot Plant of Sodium Sarcosinate
- Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group