Home Effect of Temperature and Added Counter Ions on Micelle Formation of Guanidine Surfactants
Article
Licensed
Unlicensed Requires Authentication

Effect of Temperature and Added Counter Ions on Micelle Formation of Guanidine Surfactants

Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Electrical conductivity was measured for aqueous solutions of long-chain guanidine surfactants (G12 and MG12) at different temperatures and with various added counter ions. The critical micelle concentration (cmc) of these surfactants determined from the specific conductivity (κ) vs. concentration (c) plot is lower than those of the typical cationic surfactants, such as alkyltrimethylammonium chloride with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micelle solution, and the degree of counter ion binding (β) was calculated. The thermodynamic parameters for micelle formation were estimated using the values of cmc and β as a function of temperature. The more negative ΔGmic for MG12 indicates more favored micellization. The contribution of entropy term to the micelle formation is superior to that of enthalpy term in the system under study, which indicates micellization is entropy driven. By comparing the cmc and ΔGmic it is evident that all cmc decreases and the more observed negative ΔGmic in the presence of different added salts. The anion effect on the guanidine surfactants micelle formation with added salts showed the micelle forming efficiency order as: Cl < Br < NO3 < Ac.

Kurzfassung

Die elektrische Leitfähigkeit von wässrigen Lösungen aus langkettigen Guanidintensiden (G12 und MG12) wurde bei verschiedenen Temperaturen und nach Zugabe verschiedener Gegenionen gemessen. Die kritische Mizellbildungskonzentration (cmc) dieser Tenside wurde auf der Auftragung der spezifischen Leitfähigkeit (κ) in Abhängigkeit von der Konzentration (c) bestimmt. Sie war niedriger als die der Alkyltrimethylammoniumchloride (kationischen Tenside) mit der gleichen Alkylkettenlänge. Die Leitfähigkeitsdaten wurde mittels des Modells für Mischelektrolyte in mizellarer Lösung ausgewertet und der Grad der Gegenionenbildung β berechnet. Mit Hilfe der cmc- und β-Werte als Funktion der Temperatur wurden die thermodynamischen Parameter der Mizellenbildung berechnet. Je negativer der Wert ΔGmic von MG12, umso mehr ist die Mizellenbildung bevorzugt. In dem untersuchten System ist der Beitrag des Entropieterms zur Mizellenbildung größer als der Enthalpieterm, was bedeutet, dass die Mizellenbildung von der Entropie gesteuert ist. Der Vergleich zwischen der cmc und ΔGmic macht deutlich, dass in Gegenwart der verschiedenen Salze die cmc abnimmt und ΔGmic negativer wird. Der Einfluss der Anionen auf die Bildung von Mizellen der Guanidintenside zeigt die folgende Reihe der Mizellenbildungsleistung: Cl < Br < NO3 < Ac.


Prof. Qiu-xiao Li, China Research Institute of Daily Chemical Industry, 34# Wenyuan Str. Taiyuan 030001, Shanxi Province, P.R. China, Tel.: 086-351-4046718, Fax: 086-351-4040802, E-Mail:

Yongbo Song received his M.Sc. from Chinese Academy of Science (2006) and is currently working on his Ph.D. in Shanxi University. His research interests are focused on the synthesis and investigation of cationic surfactants.

Qiuxiao Li is currently a dean of China (RIDCI). He received his Ph.D. from Chinese Academy of Science (2003). His research interests are focused on the engineering development related to manufactures of surfactants and physical and chemical properties.

Yunling Li is a professional senior chemistry engineer of China (RIDCI). Her research field centered at the synthesis and properties of novel surfactants.


References

1. Di Michele, A., Brinchi, L., Di Profio, P., Germani, R., Savelli, G. and Onori, G.: J. Colloid Interface Sci.358 (2011) 160.10.1016/j.jcis.2010.12.028Search in Google Scholar PubMed

2. Shanks, P. C. and Franses, E. I.: J. Phys. Chem.96 (1992) 1794.10.1021/j100183a055Search in Google Scholar

3. Inoue, T., Ebina, H., Dong, B. and Zheng, L. Q.: J. Colloid Interface Sci.314 (2007) 236.10.1016/j.jcis.2007.05.052Search in Google Scholar PubMed

4. Siddiqui, U. S., Khan, F., Khan, I. A., Dar, A. A. and Kabirud, D.: J. Colloid Interface Sci.355 (2011) 131.10.1016/j.jcis.2010.12.007Search in Google Scholar PubMed

5. Chen, J. M., Su, T. M. and Mou, C. Y.: J. Phys. Chem.90 (1986) 2418.10.1021/j100402a033Search in Google Scholar

6. Wang, X., Li, Y., Li, J., Wang, J., Wang, Y., Guo, Z. and Yan, H.: J. Phys. Chem. B109 (2005) 10807.10.1021/jp0450585Search in Google Scholar PubMed

7. Song, Y. B., Li, Q. X. and Li, Y. L.: Colloids Surf. A393 (2012) 11.10.1016/j.colsurfa.2011.10.015Search in Google Scholar

8. Vanyúr, R., Biczók, L. and Miskolczy, Z.: Colloids Surf. A299 (2007) 256.10.1016/j.colsurfa.2006.11.049Search in Google Scholar

9. Miyake, M. and Oyama, N.: J. Colloid Interface Sci.330 (2009) 180.10.1016/j.jcis.2008.10.047Search in Google Scholar PubMed

10. Miyake, M., Yamada, K. and Oyama, N.: Langmuir24 (2008) 8527.10.1021/la801115ySearch in Google Scholar PubMed

11. Nusselder, J. J. H. and Engberts, J. B. F. N.: J. Colloid Interface Sci.148 (1992) 353.10.1016/0021-9797(92)90174-KSearch in Google Scholar

12. Paul, B. C., Islam, S. S. and Ismail, K.: J. Phys. Chem. B102 (1998) 7807.10.1021/jp9812381Search in Google Scholar

Received: 2012-01-31
Revised: 2012-05-24
Published Online: 2013-04-05
Published in Print: 2012-09-01

© 2012, Carl Hanser Publisher, Munich

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110207/html?srsltid=AfmBOoou5LtXU31FH1Cm-fwsdAm0vrK2loczsSXOdQ_41ED8ePm83sPg
Scroll to top button