Synergistic Effect of Cationic-Nonionic Surfactants on Simultaneous Separation of Phenylalanine and Tyrosine
-
A. Mohammad
and N. Haq
Abstract
A new thin layer chromatographic system comprising of silica gel impregnated with 0.1% aqueous solution (below CMC) of nonionic surfactant Brij-35 as stationary phase and 0.1% aqueous solution (below CMC) of cationic surfactant (cetrimide) as eluent has been found most suitable for the separation of closely related amino acids (phenylalanine and tyrosine) from their mixture. Effect of substitution of Brij-35 by cetrimide and sodium cholate has been examined to assess the impact of charge of impregnant on the chromatographic behavior of analytes. The changes brought about by the impregnation in the structure and homogeneity of silica gel have been studied by scanning electron microscopy (SEM) and fourier transform infra-red spectroscopy (FTIR) techniques. Optimizations of concentration of Brij-35 and cetrimide in the stationary and mobile phases respectively and the effect of bed height on the separation have also been examined. Chromatographic parameters like ΔRF, separation factor (α) and resolution (RS) were calculated for the separation of tyrosine from phenylalanine and separation mechanism have been proposed. The limits of detection for phenylalanine and tyrosine were found to be 0.25 and 0.23 μg respectively. The proposed method studied is simple, rapid and free from the use of volatile organic solvents.
Kurzfassung
Eine neue dünnschichtchromatographische Methode wurde zur Trennung sehr ähnlicher Aminosäuren (Phenylalanin und Tyrosin) aus ihren Mischungen entwickelt. Bei der stationären Phase handelt es sich um Kieselgel, das mit einer 0,1%igen wässrigen Lösung des nichtionischen Tensids Brij-35 (unterhalb der CMC) imprägniert wurde, bei dem Eluenten handelt es sich um eine 0,1%ige wässrige Lösung eines kationischen Tensids (Cetrimid). Die Wirkung der Substitution von Brij-35 durch Cetrimid und Natriumchlolat wurde untersucht, um den Einfluss der Ladung des Imprägniermittels auf das chromatographische Verhalten der Analyte zu bestimmen. Die durch die Imprägnierung verursachten Änderungen in der Struktur und der Homogenität des Kieselgels wurde mit Hilfe des Rasterelektronenmikroskopie (SEM) und der Fourier-Transform-Infrarot-Spektroskopie (FTIR) studiert. Eine Optimierung der Brij-35- und der Cetrimidkonzentration in der stationären und der mobilen Phase sowie der Effekt auf die Plattenhöhe bei der Trennung wurden ebenfalls untersucht. Chromatographische Parameter wie ΔRF, Trennfaktor (α) und Auflösung (RS) wurden für die Trennung von Tyrosin von Phenylalanin berechnet und ein Trennmechanismus wurde vorgeschlagen. Die Detektionsgrenzen von Phenylalanin und Tyrosin betrugen 0,25 bzw. 0,23 μg. Die vorgeschlagene Methode ist einfach, schnell und benötigt keine flüchtigen organischen Lösemittel.
References
1. Lozanov, V., Petrov, S. and Mitev, V.: J. Chromatogr. A1025 (2004) 201. 10.1016/j.chroma.2003.10.094Search in Google Scholar
2. Labadarios, D., Shephard, G., Botha, E., Jackson, L., Moodic, I. M. and Aburqer, J.: J. Chromatogr.383 (1986) 281. 10.1016/S0378-4347(00)83474-XSearch in Google Scholar
3. Khawas, S., Panja, D. and Laskar, S.: J. Planar Chromatogr.-Mod. TLC17 (2004) 314. 10.1556/JPC.17.2004.4.14Search in Google Scholar
4. Thongkhao-On, K., Kotegoda, S., Pulido, J. S. and Shippy, S. A.: Electrophoresis25 (2004) 2978. 10.1002/elps.200405941Search in Google Scholar
5. Pal, A. and Kumar, S.: Indian J. Chem., A44 (2005) 1589.Search in Google Scholar
6. Pal, A. and Kumar, S.: Indian J. Chem., A44 (2005) 469.Search in Google Scholar
7. Durgbanshi, A., Sharma, S., Shelke, M., BoseD., Asthana, A. and Sanghi, S. K.: Indian J. Chem., A43 (2004) 1095.Search in Google Scholar
8. Mohammad, A. and Agrawal, V.: J. Planar Chromatogr.-Mod. TLC13 (2000) 365.Search in Google Scholar
9. Mustafa, G., Abbasi, A. and Zaidi, Z. H.: J. Chem. Eng.11 (1992) 53.Search in Google Scholar
10. Wawrzycki, S. and Pyra, E.: Chromatographia51 (2000) S 309. 10.1007/BF02492824Search in Google Scholar
11. Bhushan, R., Martens, J. and Thiongo, G. T.: J. Pharm. Biomed. Anal.21 (2000) 1143. 10.1016/S0731-7085(99)00203-4Search in Google Scholar
12. Bhushan, R., Ali, I. and Sharma, S.: Biomed. Chromatogr.10 (1996) 37. 10.1002/(SICI)1099-0801(199601)10:1<37::AID-BMC547>3.0.CO;2-PSearch in Google Scholar
13. Mohammad, A. and Agrawal, V.: Indian J. Chem. A40 (2001) 1113. 10.1021/ie000312aSearch in Google Scholar
14. Bhushan, R., Martens, J., Wallbaum, S., Joshi, S. and Parshad, V.: Biomed. Chromatogr.11 (1997) 286. 10.1002/(SICI)1099-0801(199709)11:5<286::AID-BMC698>3.0.CO;2-9Search in Google Scholar
15. Baranowska, I. and Kozlowska, M.: Talanta42 (10) (1995) 1553. 10.1016/0039-9140(95)01569-WSearch in Google Scholar
16. Bhushan, R. and Agarwal, R.: Biomed. Chromatogr.12 (1998) 322. 10.1002/(SICI)1099-0801(199811/12)12:6<322::AID-BMC754>3.0.CO;2-0Search in Google Scholar
17. Bhushan, R. and Thiongo, G. T.: J. Planar Chromatogr.-Mod. TLC13 (2000) 33.Search in Google Scholar
18. Rozylo, J. K. and Malinowska, I.: J. Planar Chromatogr.-Mod. TLC6 (1993) 34.Search in Google Scholar
19. Rozylo, J. K., Malinowska, I. and Musheghyan, A. V.: Planar Chromatogr.-Mod. TLC2 (1989) 374.Search in Google Scholar
20. Pyka, A.: J. Liq. Chromatogr. Relat. Technol.22 (1999) 41. 10.1081/JLC-100101642Search in Google Scholar
21. Varshney, K. G., Khan, A. A., Maheshwari, S. M. and Gupta, U.: Bull. Chem. Soc.65 (1992) 2773. 10.1246/bcsj.65.2773Search in Google Scholar
22. Sharma, S. D., Sharma, H. and Sharma, S. C.: Chem. Environ. Res.11 (2002) 179.Search in Google Scholar
23. Nabi, S. A. and Khan, M. A.: Acta Chromatogr.13 (2003) 161.Search in Google Scholar
24. Mohammad, A. and Haq, N.: Adsorp. Sci. & Tech.24(2006) 887. 10.1260/026361707781422013Search in Google Scholar
25. Farulla, E., Jacobelli-Teri, C., Lederer, M. and Salvetti, F.: J. Chromatogr., 12 (1963) 255. 10.1016/S0021-9673(01)83682-7Search in Google Scholar
26. Lepri, L., Desideri, P. G. and Heimler, D.: J. of Chromatogr.153 (1978) 77. 10.1016/S0021-9673(00)89857-XSearch in Google Scholar
27. Lepri, L., Desideri, P. G. and Heimler, D.: J. of Chromatogr.155 (1978) 119. 10.1016/S0021-9673(00)83942-4Search in Google Scholar
28. Mohammad, A., Gupta, R. and Bhawani, S. A.: Tens. Surf. Deter.46 (2009) 267.Search in Google Scholar
29. Mohammad, A. and Zehra, A.: J. Chromatogr. Sci. (Accepted)Search in Google Scholar
© 2010, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Analysis
- Fragmentation Mechanism of Alkyl-monoglycosides by Mass Spectrometry
- Environmental
- Concentrations of Endocrine Disrupting Alkylphenols and Their Mono- and Diethoxylates in Sediments and Water from Artificial Lake Malta in Poland
- Synthesis
- Synthesis of 1,1,1-Triethoxycarbonyl-3-[2-(F-alkyl)-ethyl]propanes and 1,1,q,q-Tetraalkoxycarbonyl-1,q-di-[2-(F-alkyl)-ethyl]alcanes as Precursors of Anionic Surfactants
- Synthesis and Properties of Di-n-hexadecyl-α,ω-Alkyl Bisphosphate Surfactants
- Novel Surfactants
- Study of Glycerol and Sweet Water as a Carbon Source for Production of Rhamnolipids by Naturally Occurring Strains of Pseudomonas aeruginosa (ATCC 10145 and ATCC 9027)
- Study on the Synthesis and Surface Activities of Novel Alkyl Sulfonate Gemini Surfactants
- Physical Chemistry
- Synergistic Effect of Cationic-Nonionic Surfactants on Simultaneous Separation of Phenylalanine and Tyrosine
- Thermodynamics of Micellization and Conductance Behavior of Uranyl Soap Solutions
- The Micelle-to-Vesicle Phase Transition in Dilute Aqueous Solution from Undecylamine Induced by Metal(II) ion (Cu2+)
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Analysis
- Fragmentation Mechanism of Alkyl-monoglycosides by Mass Spectrometry
- Environmental
- Concentrations of Endocrine Disrupting Alkylphenols and Their Mono- and Diethoxylates in Sediments and Water from Artificial Lake Malta in Poland
- Synthesis
- Synthesis of 1,1,1-Triethoxycarbonyl-3-[2-(F-alkyl)-ethyl]propanes and 1,1,q,q-Tetraalkoxycarbonyl-1,q-di-[2-(F-alkyl)-ethyl]alcanes as Precursors of Anionic Surfactants
- Synthesis and Properties of Di-n-hexadecyl-α,ω-Alkyl Bisphosphate Surfactants
- Novel Surfactants
- Study of Glycerol and Sweet Water as a Carbon Source for Production of Rhamnolipids by Naturally Occurring Strains of Pseudomonas aeruginosa (ATCC 10145 and ATCC 9027)
- Study on the Synthesis and Surface Activities of Novel Alkyl Sulfonate Gemini Surfactants
- Physical Chemistry
- Synergistic Effect of Cationic-Nonionic Surfactants on Simultaneous Separation of Phenylalanine and Tyrosine
- Thermodynamics of Micellization and Conductance Behavior of Uranyl Soap Solutions
- The Micelle-to-Vesicle Phase Transition in Dilute Aqueous Solution from Undecylamine Induced by Metal(II) ion (Cu2+)