Home Physical Sciences Synergism in Mixed Anionic–Amphoteric Surfactant Solutions: Influence of Anionic Surfactant Chain Length
Article
Licensed
Unlicensed Requires Authentication

Synergism in Mixed Anionic–Amphoteric Surfactant Solutions: Influence of Anionic Surfactant Chain Length

  • R. Abdel-Rahem
Published/Copyright: April 2, 2013
Become an author with De Gruyter Brill

Abstract

The influence of chain length on the composition of mixed micelles in binary mixtures of N,N-dimethyldodecylamine oxide (DDAO) and sodium decyl-, sodium dodecyl- and sodium tetradecylsulfate (abbreviated as SDeS, SDS and STS, respectively) has been determined at 30°C. From the surface tension measurements, the critical micelle concentration (cmc) data were measured as a function of mixing composition. Cmc-values were then analyzed according to regular solution model. The composition of mixed micelles, the interaction parameter (β) and the activity coefficients were evaluated from the regular solution model for the all anionic-amphoteric mixed systems. The interaction parameter values indicated a synergistic interaction between DDAO and the three anionic surfactants at all mole fractions to be due to an overall attractive interaction in the mixed micelles. The strength of the interaction between the amphoteric surfactant and the sodium alkyl sulfate in three mixed systems obeys the following order: SDeS/DDAO > SDS/DDAO > STS/DDAO suggesting that the decrease in the length of anionic surfactant alkyl chain results in a stronger interaction with DDAO. On the other hand, the viscosity data reveals a viscosity increasing trend of STS/DDAO > SDS/DDAO > SDeS/DDAO.

Kurzfassung

Der Einfluss der Kettenlänge auf die Zusammensetzung von Mischmizellen in binären Mischungen von N,N-Dimethyldodecylaminoxid (DDAO) und Natriumdecyl- sowie Natriumdodecyl- und Natriumtetradecylsulfat (SDeS, SDS und STS) wurde bei 30°C bestimmt. Aus den Messungen der Oberflächenspannung wurden die kritischen Mizellbildungskonzentrationen (cmc) als Funktion der Mischanordnung bestimmt. Die cmc-Werte wurden dann dem regulären Lösungsmodell entsprechend analysiert. Die Zusammensetzung der Mischmizellen, der Wechselwirkungsparameter (β) und die Aktivitätskoeffizienten wurden für alle anionisch-amphoteren Mischsysteme aus dem regulären Lösungsmodell bewertet. Die Werte der Wechselwirkungsparameter zeigen eine synergistische Wechselwirkung zwischen DDAO und den drei anionischen Tensiden bei allen Molenbrüchen, aufgrund der allgemeinen Anziehungswechselwirkung in den Mischmizellen. Die Stärke der Wechselwirkung zwischen den amphoteren Tensiden und Natriumalkylsulfat gehorchen in drei Mischsystemen der Reihenfolge: SDeS/DDAO > SDS/DDAO > STS/DDAO, was darauf hinweist, dass eine Verkürzung der anionischen Tensidalkykettenlänge eine stärkere Wechselwirkung mit DDAO bewirkt. Andererseits zeigen die Viskositätswerte eine Viskositätszunahme in Richtung STS/DDAO > SDS/DDAO > SDeS/DDAO.


Dr. Rami Abdel-Rahem, King Faisal University, Teachers College of Alhassa, Department of Science, Section of Chemistry, Al Hafouf 31982, Kingdom of Saudi Arabia, E-Mail:

Dr. Rami Abdel-Rahem was born in As Sarih (Jordan) in 1974. He studied Applied Chemistry at Jordan University of Science and Technology and got his Master at middle of 2000 under supervision of Dr. Bassam Al-Bitar. At end of 2000, Dr. Abdel-Rahem joined the group of Prof. Dr. Heinz Hoffmann at Bayreuth University (Germany) and received a PhD in Physical Chemistry at 2003. Areas of interest are surfactants properties, rheology, electron microscopy, phase behaviour and physical properties of polymer composite.


References

1.Holland, P. and Rubingh, D.: Mixed Surfactants System, ASC symposium series 501, American chemical society (1992) 1.10.1021/bk-1992-0501Search in Google Scholar

2.Bakshi, M., Kaur, G. and Kaura, A.: Colloid and Surfaces A: Physiochem. Eng. Aspects269 (2005)72.Search in Google Scholar

3.Li, F., Li, G. and Chen, J.: Colloid and Surfaces A: Physiochem. Eng. Aspects145 (1998) 167.10.1016/S0927-7757(98)00543-3Search in Google Scholar

4.Mclachlan, A. and Marangoni, D.: J. Colloid Interface Sci.295 (2006) 243.10.1016/j.jcis.2005.08.008Search in Google Scholar PubMed

5.Majhi, P., Dubin, P., Feng, X., Guo, X., Leermakers, F. and Tribt, C.: J. Phys. Chem. B108 (2004) 5980.10.1021/jp0374307Search in Google Scholar

6.Hines, J., Thomas, R., Garrett, P., Rennie, G. and Penfold, J.: J. Phys. Chem.101 (1997) 9215.Search in Google Scholar

7.J. Phys. Chem.44 (1998) 8834.Search in Google Scholar

8.Vora, S., George, A., Desai, H. and Bahadur, P.: Journal of Surfactants and Detergents2 (1999) 213.10.1007/s11743-999-0076-5Search in Google Scholar

9.Varade, D., Patel, V., Vethmuthu, M. and Bahadur, P.: Colloid and Surfaces A: Physiochem. Eng. Aspects251 (2004) 161.10.1016/j.colsurfa.2004.10.001Search in Google Scholar

10.Goloub, T., Pugh, R. and Zhmud, B.: J. Colloid Interface Sci.229 (2000) 72.10.1006/jcis.2000.6954Search in Google Scholar PubMed

11.Desai, T. and Dexit, S.: J. Colloid Interface Sci.177 (1996) 471.10.1006/jcis.1996.0060Search in Google Scholar

12.Haque, M., Das, A. and Moulik, S.: J. Colloid Interface Sci.217 (1999) 1.10.1006/jcis.1999.6267Search in Google Scholar PubMed

13.Holland, P. and Rubingh, D.: J. Phys. Chem.87 (1984) 1984.10.1021/j100234a030Search in Google Scholar

14.Liu, L. and Rosen, M.: J. Colloid Interface Sci.179 (1996) 454.10.1006/jcis.1996.0237Search in Google Scholar

15.Rosen, M.: Surfactants and Interfacial Phenomenon. Willy (1989) 393.Search in Google Scholar

16.Zhou, Q. and Rosen, M.: Langmuir.19 (2003) 4555.10.1021/la020789mSearch in Google Scholar

17.Hua, X. and Rosen, M.: J. Colloid Interface Sci.90 (1982) 212.10.1016/0021-9797(82)90414-3Search in Google Scholar

18.Gharibi, H. and Rafati, A.: Langmuir14 (1998) 21912196.10.1021/la9709002Search in Google Scholar

19.Giongo, C., Bakshi, M., Singh, J., Ranganathan, R., Hajdu, J. and Bales, B.: J. Colloid Interface Sci.282 (2005) 149.10.1016/j.jcis.2004.08.071Search in Google Scholar PubMed

20.Király, Z. and Dekány, I.: J. Colloid Interface Sci.242 (2001)214.Search in Google Scholar

21.Munkert, U., Hoffmann, H., Thunig, C., Meyer, H. and Richter, W.: Progr Colloid Polym. Sci.93 (1993) 137.10.1007/BFb0118491Search in Google Scholar

22.El-Ghazawy, R., Abdel-Rahem and Al-Sabagh, A.: Polymer For Advanced Technologies15 (2004) 244.10.1002/pat.375Search in Google Scholar

23.Joshi, T., Mata, J. and Bahadur, P.: Colloid and Surfaces A: Physiochem. Eng. Aspects260 (2005) 209.10.1016/j.colsurfa.2005.03.009Search in Google Scholar

24.Li, M., Rharbi,Y.Huang,X. and Winnik, M.: J. Colloid Interface Sci.230 (2000) 135.10.1006/jcis.2000.7050Search in Google Scholar PubMed

25.Sierra, M. and Svensson, M.: Langmuir15 (1999) 2301.10.1021/la9804177Search in Google Scholar

26.Maeda, H., Muroi, S. and Kakehashi, R. J.: Phys. Chem. B101 (1997) 7378.10.1021/jp9633815Search in Google Scholar

27.Alargova, R., Vakarelsky, I., Paunov, V., Stoyanov, S., Kralchevsky, P., MehreteabA. and Broze, G.: Langmuir14 (1998) 1996.10.1021/la970958gSearch in Google Scholar

28.Majhi, P., Dubin, P., Feng, X., Guo, X., Leermakers, F. and Tribt, C.: J. Phys. Chem. B108 (2004) 5980.10.1021/jp0374307Search in Google Scholar

29.Kakehashi, R., Shizuma, M., Yamamura, S. and Takeda, T.: J. Colloid Interface Sci.279 (2004) 253.10.1016/j.jcis.2004.06.044Search in Google Scholar PubMed

30.Bakshi, M., Singh, K., Kaur, G., Yoshimura, T. and Esumi, K.: Colloid and Surfaces A: Physiochem. Eng. Aspects278 (2006) 129.10.1016/j.colsurfa.2005.12.009Search in Google Scholar

31.Varade, D., Patel, V., Vethmuthu, M. and Bahadur, P.: Colloid and Surfaces A: Physiochem. Eng. Aspects251 (2004) 161.10.1016/j.colsurfa.2004.10.001Search in Google Scholar

Received: 2009-02-28
Revised: 2009-04-26
Published Online: 2013-04-02
Published in Print: 2009-09-01

© 2009, Carl Hanser Publisher, Munich

Downloaded on 20.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/113.110035/html
Scroll to top button