Home Technology Getting to Know your Own Induction Furnace: Basic Principles to Guarantee Meaningful Simulations∗
Article
Licensed
Unlicensed Requires Authentication

Getting to Know your Own Induction Furnace: Basic Principles to Guarantee Meaningful Simulations∗

  • D. Mevec , P. Raninger , P. Prevedel , V. Jászfi and T. Antretter
Published/Copyright: August 8, 2019

Abstract

This paper deals with a methodology for a characterisation of inductive heat treatment plants to allow comparison of their practical electromagnetic behaviour with conventional simplifying assumptions used in simulations of the heating process. The impact non-sinusoidal currents and non-linear B-H curves on the simulation are specifically dealt with here. A Rogowski coil and digital oscilloscope are used to read in current signals in various induction plants and compare their total harmonic distortion (THD). In the course of parameter studies, the different current signals were used in simulations of induction to compare heating effects. This yielded positive correlations with the THDs.

Kurzfassung

Diese Arbeit präsentiert eine Methodik zur Charakterisierung von induktiven Wärmebehandlungsanlagen, um deren reales elektromagnetisches Verhalten mit den standardmäßig getroffenen, vereinfachenden Annahmen von Simulationen des Erwärmprozesses vergleichen zu können. Spezifisch wird darauf eingegangen, wie sehr eine nichtlineare BH-Kurve und ein nicht sinusförmiges Stromsignal Einfluss auf das Simulationsergebnis nehmen. Mit einer Rogowski-Spule und einem digitalen Oszilloskop werden Stromsignale von verschiedenen Induktionsanlagen eingelesen und mithilfe des Total-Harmonic-Distortion (THD)-Wertes verglichen. Im Rahmen einer Parameterstudie werden die verschiedenen Stromsignale in eine Induktionssimulation gespeist und ihre Heizleistungen zueinander in Verhältnis gestellt, wobei sich eine positive Korrelation zum THD zeigt.


Lecture held at the ASMET Werkstofftechnik- und Härtereitagung 2019, March 28–29, 2019 in Vienna, Austria

3 (corresponding author/Kontakt)

References

1. Vieweg, A.; Ressel, G.; Prevedel, P.; Marsoner, S.; Ebner, R.: Effects of the Inductive Hardening Process on the Martensitic Structure of a 50CrMo4 Steel. HTM J. Heat Treatm. Mat.72 (2017) 1, pp. 39, 10.3139/105.110308Search in Google Scholar

2. Rudnev, V.; Loveless, D.; Black, M.: Handbook of Induction Heating. CRC Press, New York, USA, 200310.1201/9781420028904Search in Google Scholar

3. Bathe, K.-J. (Ed.): Finite Element Procedures. Watertown, MA, USA, 2006Search in Google Scholar

4. Tong, D.; Gu, J.; Yang, F.: Numerical simulation on induction heat treatment process of a shaft part: Involving induction hardening and tempering. J. Mater. Processing Technol.262 (2018), pp. 277289, 10.1016/j.jmatprotec.2018.06.043Search in Google Scholar

5. Gleim, T.; Schröder, B.; Kuhl, D.: Nonlinear thermo-electromagnetic analysis of inductive heating processes. Archive of Applied Mechanics85 (2015) 8, pp. 10551073, 10.1007/s00419-014-0968-1Search in Google Scholar

6. Bui, H.-T.; Hwang, S.-J.: Modeling a working coil coupled with magnetic flux concentrators for barrel induction heating in an injection molding machine. Int. J. Heat Mass Transf.86 (2015), pp. 1630, 10.1016/j.ijheatmasstransfer.2015.02.057Search in Google Scholar

7. Zgraja, J.; Bereza, J.: Computer simulation of induction heating system with series inverter. COMPEL22 (2003), pp. 4857, 10.1016/j.ijheatmasstransfer.2015.02.057Search in Google Scholar

8. Martín-Segura, G.; Ferrater-Simón, C.; López-Mestre, J.; Montesinos-Miracle, D.; Bergas-Jané, J.: Simulation of an induction hardening system during Curie temperature transition considering converter‘s performance. COMPEL32 (2013) 1, pp. 396411, 10.1108/03321641311293957Search in Google Scholar

9. Shmilovitz, D.: On the Definition of Total Harmonic Distortion and Its Effect on Measurement Interpretation. IEEE Transactions on Power Delivery20 (2005) 1, pp. 526528, 10.1109/TPWRD.2004.839744Search in Google Scholar

10. Lundquist, J.: On harmonic distortion in power systems. Dissertation, Chalmers University of Technology, 2001Search in Google Scholar

11. Dassault Systèmes: Abaqus 2018, 2019-01-24Search in Google Scholar

12. Schwenk, M.: Numerische Modellierung der induktiven Ein- und Zweifrequenzrandschichthärtung. KIT Scientific Publishing, Karlsruhe, 2012, 10.5445/KSP/1000030463Search in Google Scholar

13. Labridis, D.; Dokopoulos, P.: Calculation of Eddy Current Losses in Nonlinear Ferromagnetic Materials. IEEE Transactions on Magnetics25 (1989) 3, pp. 26652669, 10.1109/20.24506Search in Google Scholar

14. Carslaw, H. S.; Jaeger, J. C.: Conduction of Heat in Solids. Oxford University Press, Oxford, UK, 1959Search in Google Scholar

Published Online: 2019-08-08
Published in Print: 2019-08-14

© 2019, Carl Hanser Verlag, München

Downloaded on 22.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/105.110389/html
Scroll to top button