Home Technology Internal Quenching: Ideal Heat Treatment for Difficult to Access Component Sections∗
Article
Licensed
Unlicensed Requires Authentication

Internal Quenching: Ideal Heat Treatment for Difficult to Access Component Sections∗

  • F. Muehl , S. Dietrich and V. Schulze
Published/Copyright: June 11, 2019

Abstract

The heat treatment method Internal Quenching constitutes an alternative method to increase the surface strength of internally loaded high pressure steel components like common rail parts, pipelines, or valves. With the prototypic Internal Quenching device, which was built up at IAM-WK, it is possible to generate hardened surfaces and influence residual stresses in the inner surface of through-drilled parts. This is reached through an austenitisation followed by an internal quenching step, which leads to a martensitic microstructure and compressive residual stresses. Furthermore, it is possible to heat the outer surface by inductive heating during the quenching process which helps to avoid a through hardening of the parts. Due to that various heat treatment strategies can be realized and the residual stresses in the inner surface could be tailored to the load situation.

Kurzfassung

Internal Quenching ist ein alternatives Wärmebehandlungsverfahren zur Verbesserung der Oberflächenfestigkeit innenbelasteter Hochdruck-Stahlkomponenten wie Common Rail-Systeme, Pipelines oder Ventile. Anhand des am IAM-WK entwickelten Internal Quenching-Prototyps können Innenbohrungen von Bauteilen mit Durchgangsbohrungen gehärtet und der Eigenspannungszustand beeinflusst werden. Erreicht wird dies durch Austenitisieren und einem nachfolgenden inneren Abschrecken, wodurch ein martensitisches Gefüge und Druckeigenspannungen erzeugt werden. Zudem können äußere Bereiche durch induktives Erwärmen während des Abschreckprozesses erhitzt werden, um ein Durchhärten der Bauteile zu vermeiden. Hierdurch können unterschiedliche Wärmebehandlungsstrategien umgesetzt und der Eigenspannungszustand an innen liegenden Oberflächen auf die jeweilige Belastungssituation angepasst werden.


Lecture presented at the International Conference on Quenching and Distortion Engineering, QDE2018, Nov. 24–27, 2018, Nagoya, Japan

3 (Corresponding author/Kontakt)

References

1. Schön, M.; Seeger, T.: Dauerfestigkeitsberechnung und Bemessung autofrettierter innendruckbeanspruchter Bauteile. Mat.-wiss. Werkstofftech. 26 (1995) 7, pp. 347356, 10.1002/mawe.19950260706Search in Google Scholar

2. Kobasko, N. I.: Intensive Steel Quenching Methods. In: Quenching Theory and Technology. 2nd ed., CRC Press, Boca Raton, Fla, USA, 2010, pp. 509569, 10.1201/9781420009163-c15Search in Google Scholar

3. Buttsworth, D. R.: A finite difference routine for the solution of transient one dimensional heat conduction problems with curvature and varying thermal properties. Techn. Report TR-2001-01 Faculty of Engineering & Surveying, University of Southern Queensland, Australia, 2001Search in Google Scholar

4. Richter, F.: Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit: Polynome und graphische Darstellungen. Mitteilung aus dem Forschungsinstitut der Mannesmann AG. Stahleisen, Düsseldorf, 1983Search in Google Scholar

5. Gür, C. H.; Pan, J. (Eds.): Handbook of thermal process modeling of steels. CRC Press, Boca Raton, Fla, USA, 2009Search in Google Scholar

Published Online: 2019-06-11
Published in Print: 2019-06-14

© 2019, Carl Hanser Verlag, München

Downloaded on 20.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/105.110382/html
Scroll to top button