Home Technology Development of an Aluminium-Reduced Niobium-Microalloyed Case Hardening Steel for Heavy Gear Manufacturing
Article
Licensed
Unlicensed Requires Authentication

Development of an Aluminium-Reduced Niobium-Microalloyed Case Hardening Steel for Heavy Gear Manufacturing

  • G. Kripak , M. Sharma , R. Kohlmann , B. Clausen , U. Prahl , H.-W. Zoch and W. Bleck
Published/Copyright: February 6, 2019

Abstract

Fatigue strength is a key mechanical property for heavy transmission components, which are subjected to dynamic loading conditions. Oxidic steel cleanliness is known to greatly influence the fatigue strength of steel. The underlying research project work aimed to improve the oxidic cleanliness of the case hardening steel grade 18CrNiMo7-6 (DIN EN ISO 10084), whilst maintaining a fine austenite grain size during high temperature carburising. The hypothesis thereby is to lower the aluminium content of steel in order to reduce the probability of formation of aluminium oxide inclusions. In the absence of aluminium nitride precipitates, the prevention of undue austenite grain coarsening has been ensured in this work by alloying the steel with the appropriate amount of niobium. The optimum content of niobium was selected based on thermodynamic calculations using Thermo-Calc®. The results indicate the basic feasibility of obtaining fine grain stability on an industrial scale for application to high temperature carburising at 995°C for 14.4 hours.

Kurzfassung

Für dynamisch belastete Großgetriebe ist die Dauerfestigkeit eine zentrale Eigenschaft, welche stark durch den oxidischen Reinheitsgrad des Stahles beeinflusst wird. Das hier zugrundeliegende Forschungsvorhaben zielte auf die Verbesserung des oxidischen Reinheitsgrades im Einsatzstahl 18CrNiMo7-6 (DIN EN ISO 10084) unter Beibehaltung der Feinkornbeständigkeit bei hohen Aufkohlungstemperaturen. Der werkstoffkundliche Ansatz ist die Reduktion des Aluminiumgehaltes, um die Wahrscheinlichkeit des Auftretens unerwünschter Aluminiumoxide zu verringern. Der Erhalt der Feinkornbeständigkeit wird in diesem Konzept ohne Aluminiumnitride durch eine Anpassung des Niobgehaltes ermöglicht. Die benötigte Menge an Niob wurde durch thermodynamische Simulationen mit Thermo-Calc® berechnet. Die Ergebnisse weisen die prinzipielle Machbarkeit des Erhaltens der Feinkornbeständigkeit im industriellen Maßstab bei Einsatztemperaturen bis 995 °C für 14,4 Stunden nach.


5 (Corresponding author / Kontakt)

References

1. Brook, R.: Discussion on effect of alloying additions on the structure and properties of mild steels. J. Iron Steel Inst.203 (1965), p. 1040Search in Google Scholar

2. MelanderA.; Rolfsson, M.; Nordgren, A.; Jansson, B.; Hedberg, H.; Lund, T.: Influence of inclusion contents on fatigue properties of SAE 52100 bearing steels. Scand. J. Metall.20 (1991), pp. 229244Search in Google Scholar

3. Kiessling, R.: Non-metallic inclusions in steel. Vol. 5, Institute of Metals: Book No. 411, London, UK, 1989Search in Google Scholar

4. KiesslingR. (Ed.): Clean Steels: Proc. 2nd Int. Conf. on Clean Steel, 01–03.06.1981, Balatonfüred, Hungary, Metals Society, 1981, auf CDSearch in Google Scholar

5. Atkinson, H. V.; Shi, G.: Characterization of inclusions in clean steels: a review including the statistics of extreme methods. Prog. Mater. Sci.48 (2003) 5, pp. 457520, 10.1016/s0079-6425(02)00014-2Search in Google Scholar

6. Gove, K. B.; Charles, J. A.: Further aspects of inclusion deformation. Met. Technol.1 (1974) 1, pp. 425431, 10.1179/030716974803287366Search in Google Scholar

7. Parrish, G.: Carburizing – Microstructures and Properties. ASM Int., Materials Park, OH, USA, 199910.31399/asm.tb.cmp.9781627083379Search in Google Scholar

8. Fletcher, E. E.; Elsea, A. R.; Bain, E. C.: Effect of Columbium on the Properties of Aluminum-Killed, Medium-Carbon Steel. Trans. Quarterly ASM54 (1961), pp. 111Search in Google Scholar

9. de Kazinczy, F.: Discussion on effect of alloying additions on the structure and properties of mild steels. J. Iron and Steel Inst.203 (1965), pp. 10391040Search in Google Scholar

10. Hannerz, N. E.; Lindborg, U.; Lehtinen, B.: Brittleness in a cast steel caused by NbC precipitation. Journal of the Iron and Steel Institute206 (1968), pp. 6873Search in Google Scholar

11. Malinochka, Y. N.; Koval'chuk, G. Z.; Balakina, N. A.: Structure of cast carbon steel with niobium. Met. Sci. Heat Treat. (Original: Metallovedenie i Termicheskaya Obrabotka Metallov)12 (1970) 3, pp. 248250, 10.1007/bf00657813Search in Google Scholar

12. Heikkinen, V. K.; Packwood, R. H.: On the occurrence of Fe-NbC Eutectic in Niobium-bearing Mild Steel. Scand. J. Metall.6 (1977), pp. 170175Search in Google Scholar

13. Matsui, S.; Sato, S.; Tanaka, T.: Precipitation limit of the Nb(CN) eutectic colonies. Proc. 102nd ISIJ Meeting, November 1981, Kyoto-fu Chusho Kigyo Kaikan, Kyoto, Japan, Lecture No. 1214, Iron and Steel Institut Japan, 1981, auf CDSearch in Google Scholar

14. Filippenkov, A. A.; Ryzhkov, A. G.; Popov, V. V.; Akselrod, A. E.; Novik, V. I.; Burkhovetskii, V. V.: Carbonitrides of eutectic morphology in niobium containing steels. Steel in the USSR21 (1991), pp. 8687Search in Google Scholar

15. Li, P. H.; Ibraheem, A. K.; Priestner, R.: Eutectic Precipitation of (Ti,Nb,V)(C,N) in Cast, Microalloyed Low-C Austenite and Effects of Reheating. Mater. Sci. Forum284–286 (1998), pp. 571526, 10.4028/www.scientific.net/msf.284-286.517Search in Google Scholar

16. Bernetič, J.; Bradaškja, B.; Kosec, G.; Kosec, B.; Bricelj, E.: Centreline formation of the Nb(C,N) eutectic in 0.15 % C; 0.0071 % N; 0.022 % Nb; 0.033 % Al and 0.003 % S structural steel. Materials and technology42 (2008) 6, pp. 291294, open accessSearch in Google Scholar

17. Sharma, M.; Richter, S.; Prahl, U.; Bleck, W.: Characterization of Nb-Microsegregation and Eutectic Carbide in As-Cast Nb-Microalloyed Al-Free Case Hardening Steel. Steel res. int.88 (2017) 10, pp. 112, 10.1002/srin.201700092Search in Google Scholar

18. Mohrbacher, H.: Grain size control by niobium microalloying in gear steel during high temperature carburizing. Proc. ISAS'09, Int. Symp. Automobile Steel, 06-08.09.09, Dalian, CN, Metallurgical Industry Press, Beijing, 2009, CN, pp. 411415Search in Google Scholar

19. Speer, J. G.; Matlock, D. K.: Some Recent Developments in Microalloyed Bar and Forging Steels. (2005), pp. 434441, open accessSearch in Google Scholar

20. Davidson, S. G.; Wise, J. P.; Speer, J. G.: The Influence of Titanium on Grain Size in High-temperature Carburized Steels. Proc. 20th ASM Heat Treating Soc. Conf., 09.-12.10.2000, St. Louis, US-MO, ASM Int., Materials Park, US-OH, 2001, pp. 11441151Search in Google Scholar

21. Shen, Y.; Hansen, S. S.: Effect of the Ti/N Ratio on the Hardenability and Mechanical Properties of a Quenched-and-Tempered C-Mn-B steel. Metall. Mater. Trans. A28 (1997) 10, pp. 20272035, 10.1007/s11661-997-0159-6Search in Google Scholar

22. Monnot, J.; Heritier, B.; Cogne, J. Y.: Relationship of Melting Practice, Inclusion Type, and Size with Fatigue Resistance of Bearing Steels. In: Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, Hoo, J. J. C. (Ed.), ASTM Int., West Conshohocken, US-PA, 1988, pp. 149164, 10.1520/STP26232SSearch in Google Scholar

23. Alogab, K. A.; Matlock, D. K.; Speer, J. G.; Kleebe, H. J.: The Influence of Niobium Microalloying on Austenite Grain Coarsening Behavior of Ti-modified SAE 8620 Steel. ISIJ Int.47 (2007) 2, pp. 307316, 10.2355/isijinternational.47.307Search in Google Scholar

24. Bleck, W.: Materials Science of Steel. Textbook for students. 2. Aufl., Verlag Mainz, Aachen, 2010, p. 304. – ISBN: 978-3-86130-923-9Search in Google Scholar

25. FKM-Richtlinie: Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguss- und Aluminiumwerkstoffen. 4. erw. Aufl., VDMA Verlag GmbH, Frankfurt, 2002Search in Google Scholar

Published Online: 2019-02-06
Published in Print: 2019-02-14

© 2019, Carl Hanser Verlag, München

Downloaded on 24.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/105.110367/html
Scroll to top button