Home Influence of Chromium, Zirconium and Silicon on the Wear Resistance of Titanium Aluminum Nitride (TiAlN) Multilayer Films
Article
Licensed
Unlicensed Requires Authentication

Influence of Chromium, Zirconium and Silicon on the Wear Resistance of Titanium Aluminum Nitride (TiAlN) Multilayer Films

  • H. Decho , A. Mehner , J. Kohlscheen and H.-W. Zoch
Published/Copyright: February 7, 2018

Abstract

Titanium aluminum nitride (TiAlN) coatings are frequently used for cutting applications because of their high wear resistance and high thermal stability. Doping with additional elements and a multilayered film structure can significantly improve the wear resistance of these hard coatings. For this context, the wear resistant of TiAlN based multilayer film systems was investigated. Films with different contents of chromium, zirconium and silicon were deposited by reactive DC magnetron sputtering on cemented tungsten carbide (WC/Co) milling inserts. Doping content and layer thickness were varied by the target power. Chemical composition, microstructure, adhesion, hardness and tool life time was analyzed by glow discharge optical emission spectroscopy (GDOES), electron microscopy, scratch tests, hardness indentation tests and milling tests. An industrial TiAlN coating was used as reference for the cutting test. Milling inserts coated with TiAlN/CrXN and TiAlN/ZrN films showed no improved life time in comparison to the TiAlN reference, whereas the lifetime of the TiAlN/SiXNY coated milling inserts was enhanced significantly for silicon contents up to 1.8 at.-%. A further increase of the silicon content the resulted in a significant decrease of adhesion and cutting performance.

Kurzfassung

Titanaluminiumnitridschichten (TiAlN) werden aufgrund ihrer hohen Verschleiß- und Oxidationsbeständigkeit häufig als Beschichtungen in der Zerspanung eingesetzt. Die Verschleißbeständigkeit dieser Hartstoffschichten kann sowohl durch eine Dotierung mit zusätzlichen Elementen als auch durch einen Multilagenaufbau erheblich verbessert werden. In diesem Zusammenhang wurde die Verschleißbeständigkeit von TiAlN-basierten Mulitlagen-Schichtsystemen untersucht. Hierzu wurden Schichtsysteme mit verschiedenen Chrom-, Zirkonium- und Siliziumgehalten über reaktives DC-Magnetron-Sputtern auf WC/Co-Wendeschneidplatten abgeschieden. Der Dotierungsgehalt und die Lagendicke wurden dabei über die Targetleistung variiert. Die chemische Zusammensetzung, die Mikrostruktur, die Haftfestigkeit, die Eindringhärte und die Fräsperformance wurden durch optische Glimmentladungsspektrometrie (GDOES), Elektronenmikroskopie, Ritztests, instrumentierte Eindringprüfung und Frästests ermittelt. Als Referenz für die Frästests wurde eine industriell eingesetzte TiAlN-Beschichtung verwendet. Während die TiAlN/CrXN- und TiAlN/ZrN-beschichteten Wendeschneidplatten keine erhöhte Standzeit aufwiesen, konnte die Standzeit bei den TiAlN/SiXNY-beschichteten Wendeschneidplatten für Siliziumgehalte bis 1,8 At.-% erheblich verbessert werden. Eine weitere Erhöhung des Siliziumgehalts führte zu einer stark reduzierten Haftfestigkeit und Standzeit.


4 (Corresponding author)

References

1. Knutsson, A.: Thermal stability and mechanical properties of TiAlN-based multilayer and monolithic coatings. Dissertation, Linköping University, SWE, 2012Search in Google Scholar

2. Biksa, A.; Yamamoto, K.; Dosbaeva, G.; Veldhuis, S. C.; Fox-Rabinovich, G. S.; Elfizy, A.; Wagg, T.; Shuster, L. S.: Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribol. Int. 43 (2010), pp. 14911499, 10.1016/j.triboint.2010.02.008Search in Google Scholar

3. Ali Mkaddem, A.; Ben Soussia, A.; El Mansori, M.: Wear resistance of CVD and PVD multilayer coatings when dry cutting fiber reinforced polymers (FRP). Wear302 (2013), pp. 946954, 10.1016/j.wear.2013.03.017Search in Google Scholar

4. Knotek, O.; Böhmer, M.; Leyendecker, T.: On structure and properties of sputtered Ti and Al based hard compound films. J. Vac. Sci. Technol. A4 (1986), pp. 26952700, 10.1116/1.573708Search in Google Scholar

5. Derflinger, V. H.; Schütze, A.; Ante, M.: Mechanical and structural proper-ties of various alloyed TiAlN-based hard coatings. Surf. Coat. Technol. 200 (2006), pp. 46934700, 10.1016/j.surfcoat.2005.02.065Search in Google Scholar

6. Fox-Rabinovich, G. S.; Kovalev, A. I.; Aguirre, M. H.; Beake, B. D.; Yamamoto, K.; Veldhuis, S. C.; Endrino, J. L.; Wainstein, D. L.; Rashkovskiy, A. Y.: Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surf. Coat. Technol. 204 (2009), pp. 489496, 10.1016/j.surfcoat.2009.08.021Search in Google Scholar

7. Chen, L.; He, L.; Xu, Y.; Zhou, L.; Pei, F.; Du, Y.: Influence of ZrN on oxidation resistance of Ti–Al–N coating. Surf. Coat. Technol. 244 (2014), pp. 8791, 10.1016/j.surfcoat.2014.01.063Search in Google Scholar

8. Kim, Y. J.; Lee, H. Y.; Byun, T. J.; Han, J. G.: Microstructure and mechanical properties of TiZrAlN nanocomposite thin films by CFUBMS. Thin Solid Films516 (2008), pp. 36513655, 10.1016/j.tsf.2007.08.056Search in Google Scholar

9. Donohue, L. A.; Smith, I. J.; Münz, W.-D.; Petrov, I.; Greene, J. E.: Deposition and characterization of TiAlZrN films produced by a combined steered arc and unbalanced magnetron sputtering technique. Surf. Coat. Technol. 74–75 (1995), pp. 123134, 10.1016/0257-8972(95)08298-0Search in Google Scholar

10. Yang, B.; Chen, L.; Xu, Y. X.; Peng, Y. B.; Fen, J. C.; Ming, Y. D.; Wu, J.: Effect of Zr on structure and properties of Ti–Al–N coatings with varied bias. Int. J. Refract. Met. Hard Mat. 38 (2013), pp. 8186, 10.1016/j.ijrmhm.2013.01.002Search in Google Scholar

11. Arab Pour Yazdi, M.; Lomello, F.; Wang, J.; Sanchette, F.; Dong, Z.; White, T.; Wouters, Y.; Schuster, F.; Billard, A.: Properties of TiSiN coatings deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering. Vacuum109 (2014), pp. 4351, 10.1016/j.vacuum.2014.06.023Search in Google Scholar

12. Bendavid, A.; Martin, P. J.; Cairney, J.; Hoffman, M.; Fischer-Cripps, A. C.: Deposition of nanocomposite TiN-Si3N4 thin films by hybrid cathodic arc and chemical vapor process. Appl. Phys. A – Mater. Sci. Process. 81 (2005), pp. 151158, 10.1007/s00339-004-2951-0Search in Google Scholar

13. Carvalho, S.; Ribeiro, E.; Rebouta, L.; Tavares, C.; Mendonca, J. P.; Caetano Monteiro, A.; Carvalho, N. J. M.; De Hosson, J. Th. M.; Cavaleiro, A.: Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering. Surf. Coat. Technol. 177–178 (2004), pp. 459468, 10.1016/j.surfcoat.2003.08.056Search in Google Scholar

14. Carvalho, S.; Rebouta, L.; Ribeiro, E.; Vaz, F.; Tavares, C. J.; Alves, E.; Barradas, N. P.; Riviere, N. P.: Structural evolution of Ti–Al–Si–N nanocomposite coatings. Vacuum83 (2009), pp. 12061212, 10.1016/j.vacuum.2009.03.009Search in Google Scholar

15. Parlinska-Wojtan, M.; Karimi, A.; Coddet, O.; Cselle, T.; Morstein, M.: Characterization of thermally treated TiAlSiN coatings by TEM and nanoindentation. Surf. Coat. Technol. 188–189 (2004), pp. 344350, 10.1016/j.surfcoat.2004.08.060Search in Google Scholar

16. Rebouta, L.; Vaz, F.; Andritschky, M.; da Silva, M. F.: Oxidation resistance of (Ti,Al,Zr,Si)N coatings in air. Surf. Coat. Technol. 76–77 (1995), pp. 7064, 10.1016/0257-8972(95)02501-4Search in Google Scholar

17. Kim, J. S.; Kim, G. J.; Kang, M. C.; Kim, J. W.; Kim, K. H.: Cutting performance of Ti-Al-Si-N coated tool by a hybrid-coating system for high-hardened materials. Surf. Coat. Technol. 193 (2005), pp. 249254, 10.1016/j.surfcoat.2004.07.019Search in Google Scholar

18. Stueber, M.; Holleck, H.; Leiste, H.; Seemann, K.; Ulrich, S.; Ziebert, C.: Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. All. Comp. 483 (2009), pp. 321333, 10.1016/j.jallcom.2008.08.133Search in Google Scholar

19. Barshilia, H. C.; Yogesh, K.; Rajam, K. S.: Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering. Vacuum83 (2009), pp. 427434, 10.1016/j.vacuum.2008.04.075Search in Google Scholar

20. Mori, T.; Noborisaka, M.; Watanabe, T.; Suzuki, T.: Oxidation resistance and hardness of TiAlSiN/CrAlYN multilayer films deposited by the arc ion plating method. Surf. Coat. Technol. 213 (2012), pp. 216220, 10.1016/j.surfcoat.2012.10.050Search in Google Scholar

21. Chang, Y.-Y.; Wu, C.-J.: Mechanical properties and impact resistance of multilayered TiAlN/ZrN coatings. Surf. Coat. Technol. 231 (2013), pp. 6266, 10.1016/j.surfcoat.2012.03.013Search in Google Scholar

22. Sui, X.; Lin, G.; Qin, X.; Yu, H.; Zhou, X.; Wang, K.; Wang, Q.: Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool. Ceramics Int. 42 (2016), pp. 75247532, 10.1016/j.ceramint.2016.01.159Search in Google Scholar

23. Grzesik, W.; Kiszka, P.; Kowalczyk, D.; Rech, J.; Claudin, Ch.: Machining of nodular cast iron (PF-NCI) using CBN tools. Procedia CIRP1 (2012), pp. 483487, 10.1016/j.procir.2012.04.086Search in Google Scholar

24. Chen, L.; Paulitsch, J.; Yong, D.; Mayrhofer, P. H.: Thermal stability and oxidation resistance of Ti-Al-N coatings. Surf. Coat. Technol. 206 (2012), pp. 29542960, 10.1016/j.surfcoat.2011.12.028Search in Google Scholar

25. Chen, L.; Holec, D.; Du, Y.; Mayrhofer, P. H.: Influence of Zr on structure, mechanical and thermal properties of Ti–Al–N. Thin Solid Films519 (2011), pp. 55035510, 10.1016/j.tsf.2011.03.139Search in Google Scholar

26. Leyland, A.; Matthews, A.: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological be-haviour. Wear246 (2000), pp. 111, 10.1016/S0043-1648(00)00488-9Search in Google Scholar

27. Standard VDI 3198: 1992–08: Beschichten von Werkzeugen der Kaltmassivumformung, CVD- und PVD-Verfahren. VDI, Duesseldorf, 1991Search in Google Scholar

Published Online: 2018-02-07
Published in Print: 2018-02-14

© 2018, Carl Hanser Verlag, München

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/105.110337/html
Scroll to top button