Performance and Properties of an Additive Manufactured Coil for Inductive Heat Treatment in the MHz Range*
-
M. Habschied
, S. Dietrich , D. Heussen and V. Schulze
Abstract
In inductive heat treatment, the induction coil design plays an important role in the localization of heat generation. Therefore, the combination of an optimized coil geometry and frequency choice determines the workpiece properties and applicability of close-to-contour hardening for small parts or thin hardened layers. Additive manufacturing of copper alloys in the Selective Laser Melting (SLM) process offers a method to build coils with high design flexibility and precision. Conventional coil manufacturing methods are reaching their limitations due to the conflicting geometry specifications at the applied frequency range. In the present work, a characterization is presented and the performance of an SLM manufactured coil in MHz induction application of small surface hardened wires of steel is examined.
Kurzfassung
Bei der induktiven Wärmebehandlung spielt die Spulengeometrie eine wichtige Rolle, um die Wärme lokal zu generieren. Hierbei bestimmt die Kombination aus einer optimierten Spulengeometrie mit der angepassten Frequenz die späteren Bauteileigenschaften und die Anwendbarkeit einer randschichtnahen Wärmebehandlung von kleinen Bauteilen oder dünnen Schichten. Die Additive Fertigung von Kupferlegierungen im SLM-Prozess (Selective Laser Melting) bietet eine Möglichkeit Spulen mit einer hohen Präzision und Gestaltungsfreiheit zu fertigen. Hier stoßen die konventionellen Herstellungsmethoden an die Grenzen aufgrund der konkurrierenden Anforderungen der Geometrie im verwendeten Frequenzbereich. In der vorliegenden Arbeit werden eine Charakterisierung und die Leistungsfähigkeit einer im SLM-Prozess gefertigten Induktionsspule im MHz-Bereich anhand von randschichtgehärteten dünnen Stahldrähten dargestellt.
Literatur
1. Gu, D. D.; Meiners, W.; Wissenbach, K.; Poprawe, R.: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews57 (2012) 3, p. 133–164, 10.1179/1743280411Y.0000000014Gu, D. D.; Meiners, W.; Wissenbach, K.; Poprawe, R.: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews57 (2012) 3, p. 133–164, 10.1179/1743280411Y.0000000014Search in Google Scholar
2. Brecher, C.: Advances in production technology. Springer Open, Cham, Switzerland, 2015Brecher, C.: Advances in production technology. Springer Open, Cham, Switzerland, 201510.1007/978-3-319-12304-2Search in Google Scholar
3. Becker, D.: Selektives Laserschmelzen von Kupfer und Kupferlegierungen. Apprimus, Aachen, Germany, 2014Becker, D.: Selektives Laserschmelzen von Kupfer und Kupferlegierungen. Apprimus, Aachen, Germany, 2014Search in Google Scholar
4. Lodes, M. A.; Guschlbauer, R.; Körner, C.: Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Materials Letters143 (2015), p. 298–301, 10.1016/j.matlet.2014.12.105Lodes, M. A.; Guschlbauer, R.; Körner, C.: Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Materials Letters143 (2015), p. 298–301, 10.1016/j.matlet.2014.12.105Search in Google Scholar
5. Wong, K. V.; Hernandez, A.: A Review of Additive Manufacturing. ISRN Mechanical Engineering 2012 (2012) 4, p. 1–10, 10.5402/2012/208760Wong, K. V.; Hernandez, A.: A Review of Additive Manufacturing. ISRN Mechanical Engineering 2012 (2012) 4, p. 1–10, 10.5402/2012/208760Search in Google Scholar
6. Wong, M.; Tsopanos, S.; Sutcliffe, C. J.; Owen, I.: Selective laser melting of heat transfer devices. Rapid Prototyping Journal13 (2007) 5, p. 291–297, 10.1108/13552540710824797Wong, M.; Tsopanos, S.; Sutcliffe, C. J.; Owen, I.: Selective laser melting of heat transfer devices. Rapid Prototyping Journal13 (2007) 5, p. 291–297, 10.1108/13552540710824797Search in Google Scholar
7. Yasa, E.; Kruth, J.-P.: Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting. Procedia Engineering19 (2011), p. 389–395, 10.1016/j.proeng.2011.11.130Yasa, E.; Kruth, J.-P.: Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting. Procedia Engineering19 (2011), p. 389–395, 10.1016/j.proeng.2011.11.130Search in Google Scholar
8. Uhlmann, E.; Kersting, R.; Klein, T. B.; Cruz, M. F.; Borille, A. V.: Additive Manufacturing of Titanium Alloy for Aircraft Components. Procedia CIRP (2015), p. 55–60, 10.1016/j.procir.2015.08.061Uhlmann, E.; Kersting, R.; Klein, T. B.; Cruz, M. F.; Borille, A. V.: Additive Manufacturing of Titanium Alloy for Aircraft Components. Procedia CIRP (2015), p. 55–60, 10.1016/j.procir.2015.08.061Search in Google Scholar
9. Pogson, S. R.; Fox, P.; Sutcliffe, C. J.; O'Neill, W.: The production of copper parts using DMLR. Rapid Prototyping Journal9 (2003) 5, p. 334–343, 10.1108/13552540310502239.Pogson, S. R.; Fox, P.; Sutcliffe, C. J.; O'Neill, W.: The production of copper parts using DMLR. Rapid Prototyping Journal9 (2003) 5, p. 334–343, 10.1108/13552540310502239.Search in Google Scholar
10. DIN EN ISO 6507-1: Metallische Werkstoffe – Härteprüfung nach Vickers. Beuth, Berlin, 1998DIN EN ISO 6507-1: Metallische Werkstoffe – Härteprüfung nach Vickers. Beuth, Berlin, 1998Search in Google Scholar
11. Hildebrand, T.; Ruegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc.185 (1997) 1, p. 67–75, 10.1046/j.1365-2818.1997.1340694.x.Hildebrand, T.; Ruegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc.185 (1997) 1, p. 67–75, 10.1046/j.1365-2818.1997.1340694.x.Search in Google Scholar
12. Saito, T.; Toriwaki, J.-I.: New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognition27 (1994) 11, p. 1551–1565, 10.1016/0031-3203(94)90133-3Saito, T.; Toriwaki, J.-I.: New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognition27 (1994) 11, p. 1551–1565, 10.1016/0031-3203(94)90133-3Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Veranstaltungen/Events
- Veranstaltungen
- HTM-Praxis
- HTM-Praxis
- Kurzfassungen/Abstracts
- Kurzfassungen
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Microstructural Evolution of 31CrMoV9 Steel upon Controlled Gaseous Nitriding Treatment
- Ein neuer Ansatz zur Regelung von Plasmanitrierprozessen mittels Plasmanitrierkennzahl*
- Randschichtgefüge aufgekohlter und bainitisch umgewandelter Bauteile und deren Festigkeitseigenschaften* – Teil 1: Untersuchungen des Umwandlungsverhaltens
- Performance and Properties of an Additive Manufactured Coil for Inductive Heat Treatment in the MHz Range*
- Bearing Steels for Induction Hardening – Part II
- Care and Maintenance of Oil Quenchants used for Quenching Automotive Components*
Articles in the same Issue
- Veranstaltungen/Events
- Veranstaltungen
- HTM-Praxis
- HTM-Praxis
- Kurzfassungen/Abstracts
- Kurzfassungen
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Microstructural Evolution of 31CrMoV9 Steel upon Controlled Gaseous Nitriding Treatment
- Ein neuer Ansatz zur Regelung von Plasmanitrierprozessen mittels Plasmanitrierkennzahl*
- Randschichtgefüge aufgekohlter und bainitisch umgewandelter Bauteile und deren Festigkeitseigenschaften* – Teil 1: Untersuchungen des Umwandlungsverhaltens
- Performance and Properties of an Additive Manufactured Coil for Inductive Heat Treatment in the MHz Range*
- Bearing Steels for Induction Hardening – Part II
- Care and Maintenance of Oil Quenchants used for Quenching Automotive Components*