Home Technology Effect of quenchant flow on the distortion of carburized automotive pinion gears∗
Article
Licensed
Unlicensed Requires Authentication

Effect of quenchant flow on the distortion of carburized automotive pinion gears∗

  • D. S. MacKenzie , Zhichao Li and B. L. Ferguson
Published/Copyright: May 13, 2013

Abstract

In this paper, the effect of quenchant flow on the distortion of carburized steel automotive pinion gears was examined using finite element software, DANTE®. Utilizing a typical heat treat rack arrangement, two parts in the quenching rack were evaluated by finite element simulations. Quenching oil velocity field around the pinion, reported in a collaborative project that applied CFD modeling of quenchant flow through the racked parts, were used to determine local heat transfer coefficients during quenching. A transverse quenchant flow direction with respect to the pinion shaft axis was studied to investigate the generation of distortion and internal stress evolution due to combined effects of thermal gradient and phase transformations. Part shape change, internal stress and phase transformation histories were calculated for this carburized pinion gear made of AISI 8620.

Kurzfassung

In dieser Arbeit wurde die Auswirkung der Durchströmung auf den Verzug von aufgekohlten Fahrzeugritzelwellen in Abschreckmedien mittels der Finite-Elemente-Software DANTE® untersucht. Zur Anwendung kam eine typische Anordnung in einem Chargiergestell. Zwei Bauteile aus diesem Chargiergestell wurden durch Finite-Elemente-Simulationen ausgewertet. Die Wärmeübergangskoeffizienten wurden aus dem mit einem CFD-Modell berechneten Strömungsfeld des Abschrecköls um die Ritzel, über das in einem Partnerprojekt berichtet wurde, ermittelt. Die Bildung von Verzug und die Entwicklung der Eigenspannungen wurden bei einer Queranströmung der Ritzelwelle durch das Abschreckmittel unter Berücksichtigung des Zusammenspiels von thermischen Gradienten und Phasenumwandlungen untersucht. Die Historie der Formänderungen, Eigenspannungen und Phasenumwandlungen wurden für diese aufgekohlte Ritzelwelle aus dem Stahl AISI 8620 (1.6523 bzw. 20NiCrMo2-2) berechnet.


Lecture held at the 5th Int. Conf. on Quenching and Control of Distortion and the European Conf. on Heat Treatment, 25–27 April 2007, in Berlin.


References

1. Li, Z.; Ferguson, B. L.; Freborg, A. M.: Data Needs for Modeling Heat Treatment of Steel Parts. Proc. of Materials Science and Technology Conf., MS&T 2004, New Orleans, La./USA, Baker, M. A. (ed.); Association for Iron and Steel Technology, Warrendale, Pa./USA, p. 219226Search in Google Scholar

2. Freborg, A. M.; Li, Z.; Ferguson, B. L. D.Schwam, D.: Improving the Bending Fatigue Strength of Carburized Gears. Proc. of Materials Science and Technology Conf., MS&T 2004, New Orleans, La./USA, Baker, M. A. (ed.); Association for Iron and Steel Technology, Warrendale, Pa./USA, p. 227234Search in Google Scholar

3. Ferguson, B. L.; Freborg, A.; Petrus, G.: Software Simulates Quenching. Adv. Mater. Process.158(2000)2, H31h36Search in Google Scholar

4. ShunZhang; Li, Z.; Ferguson, B. L.: Effect of Carburization on the Residual Stress and Fatigue Life of a Transmission Shaft. Proc. 23rd ASM Heat Treating Society Conf., Sept. 25–28, 2005, Pittsburgh, PA/USA, Herring, D. (ed.), p. 216223Search in Google Scholar

5. Bates, C. E.; Totten, G. E.: Application of Quench Factor Analysis to Predict Hardness Under Laboratory and Production Conditions. Proc. 1st 22–25, 1992, Chicago, Illinois/USA, Totten, G. E. (ed.); ASM Int., Materials Park, p. 3339Search in Google Scholar

6. Varde, A. S.; Rundensteiner, E. A.; Maniruzzaman, M.; Sisson, R. D.: Estimating Heat Transfer Coefficients as a Function of Temperature by Data Mining. Proc. 23rd ASM Heat Treating Society Conf., Sept. 25–28, 2005, Pittsburgh, PA/USA, Herring, D. (ed.), p. 348357Search in Google Scholar

7. Narazaki, M.; Asada, S.; Fukahara, K.: Recent Research on Cooling Power of Liquid Quenchants in Japan. Proc. 2nd Int. Conf. on Quenching and the Control of Distortion, Nov. 4–7, 1996, Cleveland, Ohio/USA, Totten, G. E. (ed.); ASM Int., Materials Park, p. 3746Search in Google Scholar

8. Shick, D.; Chenoweth, D.: Development of Carburization and Quenching Simulation Tool: Determination of Heat Transfer Boundary Conditions in Salt. Proc. 2nd Int. Conf. on Quenching and the Control of Distortion, Nov. 4–7, 1996, Cleveland, Ohio/USA, Totten, G. E. (ed.); ASM Int., Materials Park, p. 35736610.2172/385580Search in Google Scholar

9. MacKenzie, D. S.; Kumar, A.; Metwally, H.: Optimizing Agitation and Quench Uniformity using CFD. Proc. 23rd ASM Heat Treating Society Conf., Sept. 25–28, 2005, Pittsburgh, PA/USA, Herring, D. (ed.), p. 271278Search in Google Scholar

10. Kumar, A.; Metwally, H.; MacKenzie, D. S.: Evaluation of Flow Uniformity around Automotive Pinion Gears During Quenching. Proc. 5th Int. Conf. on Quenching and Control of Distortion, and Europ. Conf. on Heat Treatment, April 25–27, 2007, Berlin, Grosch, J. et al. (eds.), p. 6976Search in Google Scholar

Published Online: 2013-05-13
Published in Print: 2008-02-01

© 2008, Carl Hanser Verlag, München

Downloaded on 11.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/105.100445/html
Scroll to top button