Home Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
Article
Licensed
Unlicensed Requires Authentication

Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation

  • Sze-Mun Lam EMAIL logo , Jin-Chung Sin , Ahmad Abdullah and Abdul Mohamed
Published/Copyright: June 4, 2013
Become an author with De Gruyter Brill

Abstract

Ag2O/ZnO heterostructure has been recently synthesized using a facile chemical-precipitation method. X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy results confirmed the Ag2O nanoparticles loading on ZnO nanorods. The Ag2O addition increased the visible light absorption ability and a red shift for Ag2O/ZnO heterostructure appeared when compared to pure ZnO. Photoluminescence spectra showed lower emission yield on the Ag2O/ZnO heterostructure than on pure ZnO. Such a decrease in the emission yield represents the fraction of the excited state Ag2O sensitizer involved in the charge injection process. Under compact fluorescent lamp irradiation, the Ag2O/ZnO heterostructure demonstrated higher photocatalytic activity than pure ZnO in the degradation of resorcinol, which can be attributed to the high separation efficiency of the photogenerated electron-hole pairs based on the cooperative roles of Ag2O loading on ZnO nanarods. All these characteristics represent a significant contribution of the Ag2O/ZnO heterostructure to the practical applications in indoor environmental remediation.

[1] Barreca, D., Carraro, G., Comini, E., Gasparotto, A., Maccato, C., Lebedev, O. I., Parfenova, A., Turner, S., Tondello, E., & Van Tendeloo, G. (2011a). Tailored vapor-phase growth of CuxO-TiO2 (x = 1, 2) nanomaterials decorated with Au particles. Langmuir, 27, 6409–6417. DOI: 10.1021/la200698t. http://dx.doi.org/10.1021/la200698t10.1021/la200698tSearch in Google Scholar PubMed

[2] Barreca, D., Carraro, G., Comini, E., Gasparotto, A., Maccato, C., Sada, C., Sberveglieri, G., & Tondello, E. (2011b). Novel synthesis and gas sensing performances of CuOTiO2 nanocomposites functionalized with Au nanoparticles. Journal of Physical Chemistry C, 115, 10510–10517. DOI: 10.1021/jp202449k. http://dx.doi.org/10.1021/jp202449k10.1021/jp202449kSearch in Google Scholar

[3] Barreca, D., Carraro, G., Gombac, V., Gasparotto, A., Maccato, C., Fornasiero, P., & Tondello, E. (2011c). Supported metal oxide nanosystems for hydrogen photogeneration: Quo vadis? Advanced Functional Materials, 21, 2611–2623. DOI: 10.1002/adfm.201100242. http://dx.doi.org/10.1002/adfm.20110024210.1002/adfm.201100242Search in Google Scholar

[4] Coleman, H. M., Chiang, K., & Amal, R. (2005). Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chemical Engineering Journal, 113, 65–72. DOI: 10.1016/j.cej.2005.07.014. http://dx.doi.org/10.1016/j.cej.2005.07.01410.1016/j.cej.2005.07.014Search in Google Scholar

[5] Gao, S. Y., Jia, X. X., Yang, S. X., Li, Z. D., & Jiang, K. (2011). Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance. Journal of Solid State Chemistry, 184, 764–769. DOI: 10.1016/j.jssc.2011.01.025. http://dx.doi.org/10.1016/j.jssc.2011.01.02510.1016/j.jssc.2011.01.025Search in Google Scholar

[6] Ghorai, T. K., Chakraborty, M., & Pramanik, P. (2011). Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. Journal of Alloys and Compounds, 509, 8158–8164. DOI: 10.1016/j.jallcom.2011.05.069. http://dx.doi.org/10.1016/j.jallcom.2011.05.06910.1016/j.jallcom.2011.05.069Search in Google Scholar

[7] He, J., Luo, Q., Cai, Q. Z., Li, X. W., & Zhang, D. Q. (2011). Microstructure and photocatalytic properties of WO3/TiO2 composite films by plasma electrolytic oxidation. Materials Chemistry and Physics, 129, 242–248. DOI: 10.1016/j.matchemphys.2011.04.011. http://dx.doi.org/10.1016/j.matchemphys.2011.04.01110.1016/j.matchemphys.2011.04.011Search in Google Scholar

[8] Hirano, M., Dozono, H., & Kono, T. (2011). Hydrothermal synthesis and properties of solid solutions and composite nanoparticles in the TiO2-SnO2 system. Materials Research Bulletin, 46, 1384–1390. DOI: 10.1016/j.materresbull.2011.05.016. http://dx.doi.org/10.1016/j.materresbull.2011.05.01610.1016/j.materresbull.2011.05.016Search in Google Scholar

[9] Kaneko, M., & Okura, I. (2002). Photocatalysis science and technology. Heidelberg, Germany: Springer. Search in Google Scholar

[10] Kočí, K., Obalová, L., & Lacný, Z. (2008). Photocatalytic reduction of CO2 over TiO2 based catalysts. Chemical Papers, 62, 1–9. DOI: 10.2478/s11696-007-0072-x. http://dx.doi.org/10.2478/s11696-007-0072-x10.2478/s11696-007-0072-xSearch in Google Scholar

[11] Lam, S. W., Chiang, K., Lim, T. M., Amal, R., & Low, G. K. C. (2005). Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol. Applied Catalysis B: Environmental, 55, 123–132. DOI: 10.1016/j.apcatb.2004.08.004. http://dx.doi.org/10.1016/j.apcatb.2004.08.00410.1016/j.apcatb.2004.08.004Search in Google Scholar

[12] Lam, S. M., Sin, J. C., & Mohamed, A. R. (2010). Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC). Korean Journal of Chemical Engineering, 27, 1109–1116. DOI: 10.1007/s11814-010-0169-8. http://dx.doi.org/10.1007/s11814-010-0169-810.1007/s11814-010-0169-8Search in Google Scholar

[13] Lam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination and Water Treatment, 41, 131–169. DOI: 10.1080/19443994.2012.664698. http://dx.doi.org/10.1080/19443994.2012.66469810.1080/19443994.2012.664698Search in Google Scholar

[14] Li, C. R., Chen, R., Zhang, X. Q., Shu, S. X., Xiong, J., Zheng, Y. Y., & Dong, W. J. (2011a). Electrospinning of CeO2-ZnO composite nanofibers and their photocatalytic property. Materials Letters, 65, 1327–1330. DOI: 10.1016/j.matlet.2011.01.075. http://dx.doi.org/10.1016/j.matlet.2011.01.07510.1016/j.matlet.2011.01.075Search in Google Scholar

[15] Li, P., Wei, Z., Wu, T., Peng, Q., & Li, Y. D. (2011b). Au-ZnO hybrid nanopyramids and their photocatalytic properties. Journal of the American Chemical Society, 133, 5660–5663. DOI: 10.1021/ja111102u. http://dx.doi.org/10.1021/ja111102u10.1021/ja111102uSearch in Google Scholar PubMed

[16] Maccato, C., Simon, Q., Carraro, G., Barreca, D., Gasparotto, A., Lebedev, O. I., Turner, S., & Van Tendeloo, G. (2012). Zinc and copper oxides functionalized with metal nanoparticles: An insight into their nano-organization. Journal of Advanced Microscopy Research, 7, 84–90. DOI: 10.1166/jamr.2012.1101. http://dx.doi.org/10.1166/jamr.2012.110110.1166/jamr.2012.1101Search in Google Scholar

[17] Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59. DOI: 10.1016/j.cattod.2009.06.018. http://dx.doi.org/10.1016/j.cattod.2009.06.01810.1016/j.cattod.2009.06.018Search in Google Scholar

[18] Nayak, J., Sahu, S. N., Kasuya, J., & Nozaki, S. (2008). CdS-ZnO composite nanorods: Synthesis, characterization and ap plication for application degradation of 3,4-dihydroxy benzoic acid. Applied Surface Science, 254, 7215–7218. DOI: 10.1016/j.apsusc.2008.05.268. http://dx.doi.org/10.1016/j.apsusc.2008.05.26810.1016/j.apsusc.2008.05.268Search in Google Scholar

[19] Padervand, M., Tasviri, M., & Gholami, M. R. (2011). Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chemical Papers, 65, 280–288. DOI: 10.2478/s11696-011-0013-6. http://dx.doi.org/10.2478/s11696-011-0013-610.2478/s11696-011-0013-6Search in Google Scholar

[20] Pardeshi, S. K., & Patil, A. B. (2009). Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. Journal of Hazardous Materials, 163, 403–409. DOI: 10.1016/j.jhazmat.2008.06.111. http://dx.doi.org/10.1016/j.jhazmat.2008.06.11110.1016/j.jhazmat.2008.06.111Search in Google Scholar PubMed

[21] Patil, A. B., Patil, K. R., & Pardeshi, S. K. (2010). Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. Journal of Hazardous Materials, 183, 315–323. DOI: 10.1016/ j.jhazmat.2010.07.026. http://dx.doi.org/10.1016/j.jhazmat.2010.07.02610.1016/j.jhazmat.2010.07.026Search in Google Scholar PubMed

[22] Simon, Q., Barreca, D., Bekermann, D., Gasparotto, A., Maccato, C., Comini, E., Gombac, V., Fornasiero, P., Lebedev, O. I., Turner, S., Devi, A., Fischer, R. A., & Van Tendeloo, G. (2011). Plasma-assisted synthesis of Ag/ZnO nanocomposites: First example of photo-induced H2 production and sensing. International Journal of Hydrogen Energy, 36, 15527–15537. DOI: 10.1016/j.ijhydene.2011.09.045. http://dx.doi.org/10.1016/j.ijhydene.2011.09.04510.1016/j.ijhydene.2011.09.045Search in Google Scholar

[23] Simon, Q., Barreca, D., Gasparotto, A., Maccato, C., Tondello, E., Sada, E., Comini, E., Devi, A., & Fischer, R. A. (2012). Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases. Nanotechnology, 23, 025502. DOI: 10.1088/0957-4484/23/2/025502. http://dx.doi.org/10.1088/0957-4484/23/2/02550210.1088/0957-4484/23/2/025502Search in Google Scholar PubMed

[24] Sin, J. C., Lam, S. M., & Mohamed, A. R. (2011). Optimizing photocatalytic degradation of phenol by TiO2/GAC using response surface methodology. Korean Journal of Chemical Engineering, 28, 84–92. DOI: 10.1007/s11814-010-0318-0. http://dx.doi.org/10.1007/s11814-010-0318-010.1007/s11814-010-0318-0Search in Google Scholar

[25] Sin, J. C., Lam, S. M., Mohamed, A. R., & Lee, K. T. (2012). Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: A review. International Journal of Photoenergy, 2012, 1–23. DOI: 10.1155/2012/185159. http://dx.doi.org/10.1155/2012/18515910.1155/2012/185159Search in Google Scholar

[26] Sin, J. C., Lam, S. M., Lee, K. T., & Mohamed, A. R. (2013). Fabrication of erbium-doped spherical-like ZnO hierarchical nanostructures with enhanced visible light-driven photocatalytic activity. Materials Letters, 91, 1–4. DOI: 10.1016/j.matlet.2012.09.049. http://dx.doi.org/10.1016/j.matlet.2012.09.04910.1016/j.matlet.2012.09.049Search in Google Scholar

[27] Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15, 627–637. DOI: 10.1002/pssb.19660150224. http://dx.doi.org/10.1002/pssb.1966015022410.1002/pssb.19660150224Search in Google Scholar

[28] Xiao, Q., & Ouyang, L. L. (2009). Photocatalytic photodegradation of xanthate over Zn1−x MnxO under visible light irradiation. Journal of Alloys and Compounds, 479, L4–L7. DOI: 10.1016/j.jallcom.2008.12.085. http://dx.doi.org/10.1016/j.jallcom.2008.12.08510.1016/j.jallcom.2008.12.085Search in Google Scholar

[29] Wang, L. S., Xiao, M. W., Huang, X. J., & Wu, Y. D. (2009). Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. Journal of Hazardous Materials, 161, 49–54. DOI: 10.1016/j.jhazmat.2008.03.080. http://dx.doi.org/10.1016/j.jhazmat.2008.03.08010.1016/j.jhazmat.2008.03.080Search in Google Scholar PubMed

[30] Wang, X. F., Li, S. F., Yu, H. G., Yu, J. G., & Liu, S. W. (2011). Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity. Chemistry — A European Journal, 17, 7777–7780. DOI: 10.1002/chem.201101032. http://dx.doi.org/10.1002/chem.20110103210.1002/chem.201101032Search in Google Scholar PubMed

Published Online: 2013-6-4
Published in Print: 2013-10-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0395-8/pdf
Scroll to top button