Home Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
Article
Licensed
Unlicensed Requires Authentication

Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate

  • Mateusz Galica EMAIL logo , Wiktor Kasprzyk , Szczepan Bednarz and Dariusz Bogdał
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

This work deals with catalytic activity of tetrabutylammonium decatungstate(VI) in the oxidation of selected alcohols with hydrogen peroxide as an oxidant using 1,2-dichloroethane/water or acetonitrile/water as a solvent system. Different forms of heating were compared. The highest conversions of substrates were achieved in the two phase system acetonitrile/water using microwave irradiation combined with elevated pressure. Finally, optimum parameters for these reactions in a microwave pressurised reactor were established and discussed.

[1] Adam, W., Alsters, P. L., Neumann, R., Saha-Möller, C. R., Sloboda-Rozner, D., & Zhang, R. (2002). A new highly selective method for the catalytic epoxidation of chiral allylic alcohols by sandwich-type polyoxometalates with hydrogen peroxide. Synlett, 2002, 2011–2014. DOI: 10.1055/s-2002-35570. 10.1055/s-2002-35570Search in Google Scholar

[2] Adam, W., Alsters, P. L., Neumann, R., Saha-Möller, C. R., Seebach, D., Beck, A. K., & Zhang, R. (2003). Chiral hydroperoxides as oxygen source in the catalytic stereoselective epoxidation of allylic alcohols by sandwich-type polyoxometalates: Control of enantioselectivity through a metalcoordinated template. The Journal of Organic Chemistry, 68, 8222–8231. DOI: 10.1021/jo034923z. http://dx.doi.org/10.1021/jo034923z10.1021/jo034923zSearch in Google Scholar PubMed

[3] Angioni, S., Ravelli, D., Emma, D., Dondi, D., Fagnoni, M., & Albini, A. (2008). Tetrabutylammonium decatungstate (chemo)selective photocatalyzed, radical C-H functionalization in amides. Advanced Synthesis & Catalysis, 350, 2209–2214. DOI: 10.1002/adsc.200800378. http://dx.doi.org/10.1002/adsc.20080037810.1002/adsc.200800378Search in Google Scholar

[4] Bogdał, D., & Łukasiewicz, M. (2000). Microwave-assisted oxidation of alcohols using aqueous hydrogen peroxide. Synlett, 2000, 143–145. DOI: 10.1055/s-2000-6440. http://dx.doi.org/10.1055/s-2000-644010.1055/s-2000-6440Search in Google Scholar

[5] Bonchio, M., Carraro, M., Scorrano, G., Fontananova, E., & Drioli, E. (2003). Heterogeneous photooxidation of alcohols in water by photocatalytic membranes incorporating decatungstate. Advanced Synthesis & Catalysis, 345, 1119–1126. DOI: 10.1002/adsc.200303076. http://dx.doi.org/10.1002/adsc.20030307610.1002/adsc.200303076Search in Google Scholar

[6] Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J., Knight, D.W., & Hutchings, G. J. (2006). Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science, 311, 362–365. DOI: 10.1126/science.1120560. http://dx.doi.org/10.1126/science.112056010.1126/science.1120560Search in Google Scholar PubMed

[7] Fey, T., Fischer, H., Bachmann, S., Albert, K., & Bolm, C. (2001). Silica-supported TEMPO catalysts: Synthesis and application in the Anelli oxidation of alcohols. The Journal of Organic Chemistry, 66, 8154–8159. DOI: 10.1021/jo010535q. http://dx.doi.org/10.1021/jo010535q10.1021/jo010535qSearch in Google Scholar PubMed

[8] Fornal, E., & Giannotti, C. (2007). Photocatalyzed oxidation of cyclohexane with heterogenized decatungstate. Journal of Photochemistry and Photobiology A: Chemistry, 188, 279–286. DOI: 10.1016/j.jphotochem.2006.12.023. http://dx.doi.org/10.1016/j.jphotochem.2006.12.02310.1016/j.jphotochem.2006.12.023Search in Google Scholar

[9] Freitag, J., Nüchter, M., & Ondruschka, B. (2003). Oxidation of styrene and cyclohexene under microwave conditions. Green Chemistry, 5, 291–295. DOI: 10.1039/b212522f. http://dx.doi.org/10.1039/b212522f10.1039/B212522FSearch in Google Scholar

[10] González-Arellano, C., Campelo, J. M., Macquarrie, D. J., Marinas, J. M., Romero, A. A., & Luque, R. (2008). Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem, 1, 746–750. DOI: 10.1002/cssc.200800113. http://dx.doi.org/10.1002/cssc.20080011310.1002/cssc.200800113Search in Google Scholar PubMed

[11] Guo, Y., Hu, C., Wang, X., Wang, Y., Wang, E., Zou, Y., Ding, H., & Feng, S. (2001). Microporous decatungstates: Synthesis and photochemical behavior. Chemistry of Materials, 13, 4058–4064. DOI: 10.1021/cm010211i. http://dx.doi.org/10.1021/cm010211i10.1021/cm010211iSearch in Google Scholar

[12] Guo, L. (2004). Quaternary ammonium decatungstate catalyst for oxidation of alcohols. Green Chemistry, 6, 271–273. DOI: 10.1039/b400618f. http://dx.doi.org/10.1039/b400618f10.1039/b400618fSearch in Google Scholar

[13] Jamwal, N., Gupta, M., & Paul, S. (2008). Hydroxyapatitesupported palladium (0) as a highly efficient catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols in water. Green Chemistry, 10, 999–1003. DOI: 10.1039/b802135j. http://dx.doi.org/10.1039/b802135j10.1039/b802135jSearch in Google Scholar

[14] Klemperer, W. G. (1990). Tetrabutylammonium isopolyoxometalates. In A. P. Ginsberg (Ed.), Inorganic syntheses (Series: Inorganic syntheses, Vol. 27, pp. 74–85). New York, NY, USA: Wiley. http://dx.doi.org/10.1002/9780470132586.ch1510.1002/9780470132586.ch15Search in Google Scholar

[15] Kozhevnikov, I. V. (Ed.) (2002). Catalysts for fine chemical synthesis: Catalysis by polyoxometalates (Series: Catalysts for fine chemical synthesis, Vol. 2). Chichester, UK: Wiley. Search in Google Scholar

[16] Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2008). Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angewandte Chemie International Edition, 47, 138–141. DOI: 10.1002/anie.200703161. http://dx.doi.org/10.1002/anie.20070316110.1002/anie.200703161Search in Google Scholar PubMed

[17] Molinari, A., Maldotti, A., Bratovcic, A., & Magnacca, G. (2013). Photocatalytic properties of sodium decatungstate supported on sol-gel silica in the oxidation of glycerol. Catalysis Today, 206, 46–52. DOI: 10.1016/j.cattod.2011.11.033. http://dx.doi.org/10.1016/j.cattod.2011.11.03310.1016/j.cattod.2011.11.033Search in Google Scholar

[18] Pope, M. T., & Müller, A. (Eds.) (1994). Polyoxometalates: From platonic solids to anti-retroviral activity. Dordrecht, The Netherlands: Kluwer Academic Publishers. Search in Google Scholar

[19] Protti, S., Ravelli, D., Fagnoni, M., & Albini, A. (2009). Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chemical Communications, 2009, 7351–7353. DOI: 10.1039/b917732a. http://dx.doi.org/10.1039/b917732a10.1039/b917732aSearch in Google Scholar PubMed

[20] Pybus, D. H., & Sell, C. S. (1999). The chemistry of fragrances. Cambridge, UK: The Royal Society of Chemistry. http://dx.doi.org/10.1039/978184755204410.1039/9781847552044Search in Google Scholar

[21] Sato, K., Aoki, M., Ogawa, M., Hashimoto, T., & Noyori, R. (1996). A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions. The Journal of Organic Chemistry, 61, 8310–8311. DOI: 10.1021/jo961287e. http://dx.doi.org/10.1021/jo961287e10.1021/jo961287eSearch in Google Scholar PubMed

[22] Sato, K., Aoki, M., Takagi, J., Takagi, J., Zimmermann, K., & Noyori, R. (1999). A practical method for alcohol oxidation with aqueous hydrogen peroxide under organic solvent- and halide-free conditions. Bulletin of the Chemical Society of Japan, 72, 2287–2306. DOI: 10.1246/bcsj.72.2287. http://dx.doi.org/10.1246/bcsj.72.228710.1246/bcsj.72.2287Search in Google Scholar

[23] Singh, R. P., Subbarao, H. N., & Dev, S. (1979). Organic reactions in a solid matrix-V: Silica-gel supported chromic acid reagents. Tetrahedron, 35, 1789–1793. DOI: 10.1016/0040-4020(79)88010-2. http://dx.doi.org/10.1016/0040-4020(79)88010-210.1016/0040-4020(79)88010-2Search in Google Scholar

[24] Tzirakis, M. D., Lykakis, I. N., Panagiotou, G. D., Bourikas, K., Lycourghiotis, A., Kordulis C., & Orfanopoulos, M. (2007). Decatungstate catalyst supported on silica and Γ-alumina: Efficient photocatalytic oxidation of benzyl alcohols. Journal of Catalysis, 252, 178–189. DOI: 10.1016/j.jcat.2007.09.023. http://dx.doi.org/10.1016/j.jcat.2007.09.02310.1016/j.jcat.2007.09.023Search in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0386-9/pdf
Scroll to top button