Abstract
This work deals with catalytic activity of tetrabutylammonium decatungstate(VI) in the oxidation of selected alcohols with hydrogen peroxide as an oxidant using 1,2-dichloroethane/water or acetonitrile/water as a solvent system. Different forms of heating were compared. The highest conversions of substrates were achieved in the two phase system acetonitrile/water using microwave irradiation combined with elevated pressure. Finally, optimum parameters for these reactions in a microwave pressurised reactor were established and discussed.
[1] Adam, W., Alsters, P. L., Neumann, R., Saha-Möller, C. R., Sloboda-Rozner, D., & Zhang, R. (2002). A new highly selective method for the catalytic epoxidation of chiral allylic alcohols by sandwich-type polyoxometalates with hydrogen peroxide. Synlett, 2002, 2011–2014. DOI: 10.1055/s-2002-35570. 10.1055/s-2002-35570Search in Google Scholar
[2] Adam, W., Alsters, P. L., Neumann, R., Saha-Möller, C. R., Seebach, D., Beck, A. K., & Zhang, R. (2003). Chiral hydroperoxides as oxygen source in the catalytic stereoselective epoxidation of allylic alcohols by sandwich-type polyoxometalates: Control of enantioselectivity through a metalcoordinated template. The Journal of Organic Chemistry, 68, 8222–8231. DOI: 10.1021/jo034923z. http://dx.doi.org/10.1021/jo034923z10.1021/jo034923zSearch in Google Scholar PubMed
[3] Angioni, S., Ravelli, D., Emma, D., Dondi, D., Fagnoni, M., & Albini, A. (2008). Tetrabutylammonium decatungstate (chemo)selective photocatalyzed, radical C-H functionalization in amides. Advanced Synthesis & Catalysis, 350, 2209–2214. DOI: 10.1002/adsc.200800378. http://dx.doi.org/10.1002/adsc.20080037810.1002/adsc.200800378Search in Google Scholar
[4] Bogdał, D., & Łukasiewicz, M. (2000). Microwave-assisted oxidation of alcohols using aqueous hydrogen peroxide. Synlett, 2000, 143–145. DOI: 10.1055/s-2000-6440. http://dx.doi.org/10.1055/s-2000-644010.1055/s-2000-6440Search in Google Scholar
[5] Bonchio, M., Carraro, M., Scorrano, G., Fontananova, E., & Drioli, E. (2003). Heterogeneous photooxidation of alcohols in water by photocatalytic membranes incorporating decatungstate. Advanced Synthesis & Catalysis, 345, 1119–1126. DOI: 10.1002/adsc.200303076. http://dx.doi.org/10.1002/adsc.20030307610.1002/adsc.200303076Search in Google Scholar
[6] Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J., Knight, D.W., & Hutchings, G. J. (2006). Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science, 311, 362–365. DOI: 10.1126/science.1120560. http://dx.doi.org/10.1126/science.112056010.1126/science.1120560Search in Google Scholar PubMed
[7] Fey, T., Fischer, H., Bachmann, S., Albert, K., & Bolm, C. (2001). Silica-supported TEMPO catalysts: Synthesis and application in the Anelli oxidation of alcohols. The Journal of Organic Chemistry, 66, 8154–8159. DOI: 10.1021/jo010535q. http://dx.doi.org/10.1021/jo010535q10.1021/jo010535qSearch in Google Scholar PubMed
[8] Fornal, E., & Giannotti, C. (2007). Photocatalyzed oxidation of cyclohexane with heterogenized decatungstate. Journal of Photochemistry and Photobiology A: Chemistry, 188, 279–286. DOI: 10.1016/j.jphotochem.2006.12.023. http://dx.doi.org/10.1016/j.jphotochem.2006.12.02310.1016/j.jphotochem.2006.12.023Search in Google Scholar
[9] Freitag, J., Nüchter, M., & Ondruschka, B. (2003). Oxidation of styrene and cyclohexene under microwave conditions. Green Chemistry, 5, 291–295. DOI: 10.1039/b212522f. http://dx.doi.org/10.1039/b212522f10.1039/B212522FSearch in Google Scholar
[10] González-Arellano, C., Campelo, J. M., Macquarrie, D. J., Marinas, J. M., Romero, A. A., & Luque, R. (2008). Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem, 1, 746–750. DOI: 10.1002/cssc.200800113. http://dx.doi.org/10.1002/cssc.20080011310.1002/cssc.200800113Search in Google Scholar PubMed
[11] Guo, Y., Hu, C., Wang, X., Wang, Y., Wang, E., Zou, Y., Ding, H., & Feng, S. (2001). Microporous decatungstates: Synthesis and photochemical behavior. Chemistry of Materials, 13, 4058–4064. DOI: 10.1021/cm010211i. http://dx.doi.org/10.1021/cm010211i10.1021/cm010211iSearch in Google Scholar
[12] Guo, L. (2004). Quaternary ammonium decatungstate catalyst for oxidation of alcohols. Green Chemistry, 6, 271–273. DOI: 10.1039/b400618f. http://dx.doi.org/10.1039/b400618f10.1039/b400618fSearch in Google Scholar
[13] Jamwal, N., Gupta, M., & Paul, S. (2008). Hydroxyapatitesupported palladium (0) as a highly efficient catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols in water. Green Chemistry, 10, 999–1003. DOI: 10.1039/b802135j. http://dx.doi.org/10.1039/b802135j10.1039/b802135jSearch in Google Scholar
[14] Klemperer, W. G. (1990). Tetrabutylammonium isopolyoxometalates. In A. P. Ginsberg (Ed.), Inorganic syntheses (Series: Inorganic syntheses, Vol. 27, pp. 74–85). New York, NY, USA: Wiley. http://dx.doi.org/10.1002/9780470132586.ch1510.1002/9780470132586.ch15Search in Google Scholar
[15] Kozhevnikov, I. V. (Ed.) (2002). Catalysts for fine chemical synthesis: Catalysis by polyoxometalates (Series: Catalysts for fine chemical synthesis, Vol. 2). Chichester, UK: Wiley. Search in Google Scholar
[16] Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2008). Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angewandte Chemie International Edition, 47, 138–141. DOI: 10.1002/anie.200703161. http://dx.doi.org/10.1002/anie.20070316110.1002/anie.200703161Search in Google Scholar PubMed
[17] Molinari, A., Maldotti, A., Bratovcic, A., & Magnacca, G. (2013). Photocatalytic properties of sodium decatungstate supported on sol-gel silica in the oxidation of glycerol. Catalysis Today, 206, 46–52. DOI: 10.1016/j.cattod.2011.11.033. http://dx.doi.org/10.1016/j.cattod.2011.11.03310.1016/j.cattod.2011.11.033Search in Google Scholar
[18] Pope, M. T., & Müller, A. (Eds.) (1994). Polyoxometalates: From platonic solids to anti-retroviral activity. Dordrecht, The Netherlands: Kluwer Academic Publishers. Search in Google Scholar
[19] Protti, S., Ravelli, D., Fagnoni, M., & Albini, A. (2009). Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chemical Communications, 2009, 7351–7353. DOI: 10.1039/b917732a. http://dx.doi.org/10.1039/b917732a10.1039/b917732aSearch in Google Scholar PubMed
[20] Pybus, D. H., & Sell, C. S. (1999). The chemistry of fragrances. Cambridge, UK: The Royal Society of Chemistry. http://dx.doi.org/10.1039/978184755204410.1039/9781847552044Search in Google Scholar
[21] Sato, K., Aoki, M., Ogawa, M., Hashimoto, T., & Noyori, R. (1996). A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions. The Journal of Organic Chemistry, 61, 8310–8311. DOI: 10.1021/jo961287e. http://dx.doi.org/10.1021/jo961287e10.1021/jo961287eSearch in Google Scholar PubMed
[22] Sato, K., Aoki, M., Takagi, J., Takagi, J., Zimmermann, K., & Noyori, R. (1999). A practical method for alcohol oxidation with aqueous hydrogen peroxide under organic solvent- and halide-free conditions. Bulletin of the Chemical Society of Japan, 72, 2287–2306. DOI: 10.1246/bcsj.72.2287. http://dx.doi.org/10.1246/bcsj.72.228710.1246/bcsj.72.2287Search in Google Scholar
[23] Singh, R. P., Subbarao, H. N., & Dev, S. (1979). Organic reactions in a solid matrix-V: Silica-gel supported chromic acid reagents. Tetrahedron, 35, 1789–1793. DOI: 10.1016/0040-4020(79)88010-2. http://dx.doi.org/10.1016/0040-4020(79)88010-210.1016/0040-4020(79)88010-2Search in Google Scholar
[24] Tzirakis, M. D., Lykakis, I. N., Panagiotou, G. D., Bourikas, K., Lycourghiotis, A., Kordulis C., & Orfanopoulos, M. (2007). Decatungstate catalyst supported on silica and Γ-alumina: Efficient photocatalytic oxidation of benzyl alcohols. Journal of Catalysis, 252, 178–189. DOI: 10.1016/j.jcat.2007.09.023. http://dx.doi.org/10.1016/j.jcat.2007.09.02310.1016/j.jcat.2007.09.023Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes
Articles in the same Issue
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes