Home Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
Article
Licensed
Unlicensed Requires Authentication

Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry

  • Halina Murasiewicz EMAIL logo and Zdzislaw Jaworski
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

The main purpose of the present paper was to apply the Laser Doppler Anemometry (LDA) technique to measure turbulent liquid flow in a Kenics static mixer. The LDA set-up was a one-channel backscatter system with argon-ion laser. Measurements in the static mixer were carried out for three values of the Reynolds number: 5000, 10000, and 18000. Water was used as the process liquid. Values of the axial and tangential components of the local, mean, and root mean square velocities were measured inside the static mixer. It was observed that the shape of the velocity profile depends strongly on the Reynolds number, Re, as well as on the axial, h, and radial, α, position of the measurement point. Strong dependence of the velocity fluctuations on the Reynolds number was found in the investigated range of Re and the measurement point position. Furthermore, one-dimensional energy spectra of the velocity fluctuations were also obtained by means of the Fast Fourier Transform. Fluctuation spectra of the axial and tangential velocities provided information about the energy density of velocity fluctuations in the observed range of Reynolds numbers. A study of the energy spectra led to the conclusion that the energy density increases with the increasing radial distance from the mixer walls at constant values of h, Re, and α. Minor variations in the mean value of the energy density, E, were observed together with variations of the measurement point angular position, α. In addition, it was observed that an increase of the Reynolds number causes significant increase of the power spectral density.

[1] Adamiak, I., & Jaworski, Z. (2001). An experimental investigations of non-Newtonian liquid flow in a static Kenics mixer. Chemical and Process Engineering, 22(3B), 175–180. (in Polish) Search in Google Scholar

[2] Adamiak, I., & Jaworski, Z. (2004). A non-Newtonian fluid turbulent flow in the kenics static mixer. Chemical and Process Engineering, 25, 535–541. (in Polish) Search in Google Scholar

[3] Albrecht, H. E., Borys, M., Damaschke, N., & Tropea, C. (2003). Laser Doppler and phase Doppler measurement techniques. Berlin, Germany: Springer. http://dx.doi.org/10.1007/978-3-662-05165-810.1007/978-3-662-05165-8Search in Google Scholar

[4] Baldi, S., & Yianneskis, M. (2004). On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements. Chemical Engineering Science, 59, 2659–2671. DOI: 10.1016/j.ces.2004.03. 021. http://dx.doi.org/10.1016/j.ces.2004.03.021Search in Google Scholar

[5] Barrué, H., Karoui, A., Le Sauze, N., Costes, J., & Illy, F. (2001). Comparison of aerodynamics and mixing mechanisms of three mixers: Oxynator™ gas-gas mixer, KMA and SMI static mixers. Chemical Engineering Journal, 84, 343–354. DOI: 10.1016/s1385-8947(01)00128-0. http://dx.doi.org/10.1016/S1385-8947(01)00128-010.1016/S1385-8947(01)00128-0Search in Google Scholar

[6] Baudou, C., Xuereb, C., Costes, J., & Bertrand, J. (2000). Laser Doppler measurements of turbulent parameters in different multiple-propeller systems. Chemical Engineering & Technology, 23, 257–266. DOI: 10.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-4. http://dx.doi.org/10.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-410.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-4Search in Google Scholar

[7] Bell, W. A. (1986). Spectral analysis of laser velocimeter data with the slotted correlation method. In Proceedings of the AIAA/ASME 4th Fluid Dynamics, Plasma Dynamics and Lasers Conference, May 12–14, 1986 (AIAA paper 86-1102). Atlanta, GA, USA. 10.2514/6.1986-1102Search in Google Scholar

[8] Benedict, L. H., Nobach, H., & Tropea, C. (2000). Estimation of turbulent velocity spectra from laser Doppler data. Measurement Science and Technology, 11, 1089–1104. DOI: 10.1088/0957-0233/11/8/301. http://dx.doi.org/10.1088/0957-0233/11/8/30110.1088/0957-0233/11/8/301Search in Google Scholar

[9] Crowe, C., Sommerfeld, M., & Tsuji, Y. (1998). Multiphase flows with droplets and particles. Boca Raton, FL, USA: CRC Press. Search in Google Scholar

[10] Darelius, A., Rasmuson, A., Niklasson Björn, I., & Folestad, S. (2007). LDA measurements of near wall powder velocities in a high shear mixer. Chemical Engineering Science, 62, 5770–5776. DOI: 10.1016/j.ces.2007.06.015. http://dx.doi.org/10.1016/j.ces.2007.06.01510.1016/j.ces.2007.06.015Search in Google Scholar

[11] Deshpande, S. S., Sathe, M. J., & Joshi, J. B. (2009). Evaluation of local turbulent energy dissipation rate using PIV in jet loop reactor. Industrial & Engineering Chemistry Research, 48, 5046–5057. DOI: 10.1021/ie8007924. http://dx.doi.org/10.1021/ie800792410.1021/ie8007924Search in Google Scholar

[12] Forrest, S., Bridgwater, J., Mort, P. R., Litster, J., & Parker, D. J. (2003). Flow patterns in granulating systems. Powder Technology, 130, 91–96. DOI: 10.1016/s0032-5910(02)00232-2. http://dx.doi.org/10.1016/S0032-5910(02)00232-210.1016/S0032-5910(02)00232-2Search in Google Scholar

[13] Goldstein, R. J. (1996). Fluid mechanics measurements (2nd ed.). Philadelphia, PA, USA: Taylor & Francis. Search in Google Scholar

[14] Habchi, C, Lemenand, T, Della Valle, D., & Peerhossaini, H. (2010). Turbulent mixing and residence time distribution in novel multifunctional heat exchangers-reactors. Chemical Engineering and Processing, 49, 1066–1075. DOI: 10.1016/j.cep.2010.08.007. http://dx.doi.org/10.1016/j.cep.2010.08.00710.1016/j.cep.2010.08.007Search in Google Scholar

[15] Hobbs, D. M., & Muzzio, F. J. (1998). Reynolds number effects on laminar mixing in the Kenics static mixer. Chemical Engineering Journal, 70, 93–104. DOI: 10.1016/s0923-0467(98)00065-7. 10.1016/S0923-0467(98)00065-7Search in Google Scholar

[16] Ibsen, C. H., Solberg, T., Hjertager, B. H., & Johnsson, F. (2002). Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles. Experimental Thermal and Fluid Science, 26, 851–859. DOI: 10.1016/s0894-1777(02)00196-6. http://dx.doi.org/10.1016/S0894-1777(02)00196-610.1016/S0894-1777(02)00196-6Search in Google Scholar

[17] Jaffer, S. A., & Wood, P. E. (1998). Quantification of laminar mixing in the Kenics static mixer: An experimental study. The Canadian Journal of Chemical Engineering, 76, 516–521. DOI: 10.1002/cjce.5450760323. http://dx.doi.org/10.1002/cjce.545076032310.1002/cjce.5450760323Search in Google Scholar

[18] James, R. N., Babcock, W. R., & Seifert, H. S. (1968). A laser-Doppler technique for the measurement of particle velocity. AIAA Journal, 6(1), 160–162. http://dx.doi.org/10.2514/3.446110.2514/3.4461Search in Google Scholar

[19] Kaci, H. M., Lemenand, T., Della Valle, D., & Peerhossaini, H. (2009). Effects of embedded streamwise vorticity on turbulent mixing. Chemical Engineering and Processing: Process Intensification, 48, 1457–1474. DOI: 10.1016/j.cep.2009.08.002. 10.1016/j.cep.2009.08.002Search in Google Scholar

[20] Karoui, A., LeSauze, N., Costes, J., & Bertrand, J. (1997). Experimental and numerical study of flow at the outlet of Sulzer SMV static mixers. Récents Progr`es en Génie des Procédés, 11(51), 323–330. Search in Google Scholar

[21] Kroon, P. S., Schuitmaker, A., Jonker, H. J. J., Tummers, M. J., Hensen, A., & Bosveld, F. C. (2010). An evaluation by laser Doppler anemometry of the correction algorithm based on Kaimal co-spectra for high frequency losses of EC flux measurements of CH4 and N2O. Agricultural and Forest Meteorology, 150, 794–805. DOI: 10.1016/j.agrformet.2009.08.009. http://dx.doi.org/10.1016/j.agrformet.2009.08.00910.1016/j.agrformet.2009.08.009Search in Google Scholar

[22] Kumara, W. A. S., Elseth, G., Halvorsen, B. M., & Melaaen, M. C. (2010). Comparison of Particle Image Velocimetry and Laser Doppler Anemometry measurement methods applied to the oil-water flow in horizontal pipe. Flow Measurement and Instrumentation, 21, 105–117. DOI: 10.1016/j.flowmeasinst.2010.01.005. http://dx.doi.org/10.1016/j.flowmeasinst.2010.01.00510.1016/j.flowmeasinst.2010.01.005Search in Google Scholar

[23] Laurenzi, F., Coroneo, M., Montante, G., Paglianti, A., & Magelli, F. (2009). Experimental and computational analysis of immiscible liquid-liquid dispersions in stirred vessels. Chemical Engineering Research and Design, 87, 507–514. DOI: 10.1016/j.cherd.2008.12.007. http://dx.doi.org/10.1016/j.cherd.2008.12.00710.1016/j.cherd.2008.12.007Search in Google Scholar

[24] Leitner, M., Wünsch, O., & Böhme, G. (2003). Dreidimensionale LDV und FEM zur Strömungsanalyse in statischen Mischelementen. Forschung im Ingenieurwesen, 68(1), 39–50. DOI: 10.1007/s10010-003-0109-4. (in German) http://dx.doi.org/10.1007/s10010-003-0109-410.1007/s10010-003-0109-4Search in Google Scholar

[25] Lu, Y., Glass, D. H., & Easson, W. J. (2009). An investigation of particle behavior in gas-solid horizontal pipe flow by an extended LDA technique. Fuel, 88, 2520–2531. DOI: 10.1016/j.fuel.2009.02.038. http://dx.doi.org/10.1016/j.fuel.2009.02.03810.1016/j.fuel.2009.02.038Search in Google Scholar

[26] Lui, S. W., Meneveau, C., & Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119. DOI: 10.1017/s0022112094002296. http://dx.doi.org/10.1017/S002211209400229610.1017/S0022112094002296Search in Google Scholar

[27] Mokrani, A., Castelain, C., & Peerhossaini, H. (2009). Experimental study of the influence of the rows of vortex generators on turbulence structure in a tube. Chemical Engineering and Processing: Process Intensification, 48, 659–671. DOI: 10.1016/j.cep.2008.07.009. http://dx.doi.org/10.1016/j.cep.2008.07.00910.1016/j.cep.2008.07.009Search in Google Scholar

[28] Paál, G., Angster, J., Garen, W., & Miklós, A. (2006). A combined LDA and flow-visualization study on flue organ pipes. Experiments in Fluids, 40, 825–835. DOI: 10.1007/s00348-006-0114-0. http://dx.doi.org/10.1007/s00348-006-0114-010.1007/s00348-006-0114-0Search in Google Scholar

[29] Paul, E. L., Atiemo-Obeng, V., & Kresta, S. M. (2003). Handbook of industrial mixing: science and practice. Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/047145145210.1002/0471451452Search in Google Scholar

[30] Peryt-Stawiarska, S., & Jaworski, Z. (2007). Large eddy simulations of the Newtonian fluid flow through a Kenics static mixer. Chemical and Process Engineering, 28, 435–444. Search in Google Scholar

[31] Peryt-Stawiarska, S., & Jaworski, Z. (2008). Fluctuations of the non-Newtonian fluid flow in a Kenics static mixer: An experimental study. Polish Journal of Chemical Technology, 10(3), 35–37. DOI: 10.2478/v10026-008-0033-3. http://dx.doi.org/10.2478/v10026-008-0033-310.2478/v10026-008-0033-3Search in Google Scholar

[32] Pope, S. B. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO978051184053110.1017/CBO9780511840531Search in Google Scholar

[33] Song, H. S., & Han, S. P. (2005). A general correlation for pressure drop in a Kenics static mixer. Chemical Engineering Science, 60, 5696–5704. DOI: 10.1016/j.ces.2005.04.084. http://dx.doi.org/10.1016/j.ces.2005.04.08410.1016/j.ces.2005.04.084Search in Google Scholar

[34] Szalai, E. S., & Muzzio, F. J. (2003). Fundamental approach to the design and optimization of static mixers. AIChE Journal, 49, 2687–2699. DOI: 10.1002/aic.690491103. http://dx.doi.org/10.1002/aic.69049110310.1002/aic.690491103Search in Google Scholar

[35] Tran, A. L. H., Litster, J. D., Seville, J. P. K., Ingram, A., & Fan, X. F. (2006). Dry and cohesive powders in vertical axis high shear mixers using positron emission particle tracking (PEPT). In Proceedings of the 5th World Congress on Particle Technology, April 23–27, 2006. Orlando, FL, USA: The American Institute of Chemical Engineers. Search in Google Scholar

[36] Tropea, C., Yarin, A. L., & Foss, J. F. (Eds.) (2007). Springer Handbook of experimental fluid mechanics. Berlin, Germany: Springer. 10.1007/978-3-540-30299-5Search in Google Scholar

[37] van Wageningen, W. F. C., Mudde, R. F., & van den Akker, H. E. A. (2003). Numerical investigation into mixing of particle-laden flows in a Kenics static mixer. In Proceedings of the 11th European Conference Mixing (pp. 137–144), October 14–17, 2003. Bamberg, Germany. Search in Google Scholar

[38] van Wageningen, W. F. C., Kandhai, D., Mudde, R. F., & van den Akker, H. E. A. (2004). Dynamic flow in a Kenics static mixer: An assessment of various CFD methods. AIChE Journal, 50, 1684–1696. DOI: 10.1002/aic.10178. http://dx.doi.org/10.1002/aic.1017810.1002/aic.10178Search in Google Scholar

[39] Wiklund, J. A., Stading, M., Pettersson, A. J., & Rasmuson, A. (2006). A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow. AIChE Journal, 52, 484–495. DOI: 10.1002/aic.10653. http://dx.doi.org/10.1002/aic.1065310.1002/aic.10653Search in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0375-z/pdf
Scroll to top button