Abstract
Aminophosphine of the type (Ph2PNHR) derived from 1-amino-4-methylpiperazine and its chalcogen derivatives (Ph2P(X)NHR X = S, Se) were used as ligands in solvent extraction of metal picrates such as Cu2+, Ni2+, and Pb2+ from the aqueous to the organic phase. Influence of parameters such as pH of the aqueous phase, ligand concentration in the organic phase, and concentration of the extractant extracted from the aqueous to the organic phase was investigated to determine the ligands’ ability to extract metal ions. Metal picrate extraction was investigated at 25°C using UV-VIS spectrophotometry in dichloromethane in the absence and in the presence of Ph2PNHR and chalcogenides. The extraction results revealed that the extraction percentage of Cu2+, Ni2+, and Pb2+ metals was much higher at lower pH values, indicating an acidity dependent complexation equilibrium.
[1] Abdel-Fattah, T. M., Haggag, S. M. S., & Mahmoud, M. E. (2011). Heavy metal ions extraction from aqueous media using nanoporous silica. Chemical Engineering Journal, 175, 117–123. DOI: 10.1016/j.cej.2011.09.068. http://dx.doi.org/10.1016/j.cej.2011.09.06810.1016/j.cej.2011.09.068Search in Google Scholar
[2] Abdel-Fattah, T. M., & Mahmoud, M. E. (2011). Selective extraction of toxic heavy metal oxyanions and cations by a novel silica gel phase functionalized by vitamin B4. Chemical Engineering Journal, 172, 177–183. DOI: 10.1016/j.cej.2011.05.086. 10.1016/j.cej.2011.05.086Search in Google Scholar
[3] Bojic, A. Lj., Bojic, D., & Andjelkovic, T. (2009). Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction-coagulation process in flow conditions. Journal of Hazardous Materials, 168, 813–819. DOI: 10.1016/j.jhazmat.2009.02.096. http://dx.doi.org/10.1016/j.jhazmat.2009.02.09610.1016/j.jhazmat.2009.02.096Search in Google Scholar
[4] Castro Dantas, T. N., Dantas Neto, A. A., Moura, M. C. P. A., Barros Neto, E. L., Forte, K. R., & Leite, R. H. L. (2003). Heavy metals extraction by microemulsions. Water Research, 37, 2709–2717. DOI: 10.1016/s0043-1354(03)00072-1. http://dx.doi.org/10.1016/S0043-1354(03)00072-110.1016/S0043-1354(03)00072-1Search in Google Scholar
[5] Dede, B., Karipcin, F., Arabalı, F., & Cengiz, M. (2010). Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes. Chemical Papers, 64, 25–33. DOI: 10.2478/s11696-009-0095-6. http://dx.doi.org/10.2478/s11696-009-0095-610.2478/s11696-009-0095-6Search in Google Scholar
[6] Dias Rodrigues, G., Hespanhol da Silva, M. C., Mendes da Silva, L. H., Jürgensen Paggioli, F., Minim, L. A., & dos Reis Coimbra, J. S. (2008). Liquid-liquid extraction of metal ions without use of organic solvent. Separation and Purification Technology, 62, 687–693. DOI: 10.1016/j.seppur.2008.03.032. http://dx.doi.org/10.1016/j.seppur.2008.03.03210.1016/j.seppur.2008.03.032Search in Google Scholar
[7] Fei, Z. F., & Dyson, P. J. (2005). The chemistry of phosphinoamides and related compounds. Coordination Chemistry Reviews, 249, 2056–2074. DOI: 10.1016/j.ccr.2005.03.014. http://dx.doi.org/10.1016/j.ccr.2005.03.01410.1016/j.ccr.2005.03.014Search in Google Scholar
[8] Fischer, L., Falta, T., Koellensperger, G., Stojanovic, A., Kogelnig, D., Galanski, M., Krachler, R. Keppler, B. K., & Hann, S. (2011). Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Research, 45, 4601–4614. DOI: 10.1016/j.watres.2011.06.011. http://dx.doi.org/10.1016/j.watres.2011.06.01110.1016/j.watres.2011.06.011Search in Google Scholar
[9] Gopalakrishnan, J. (2009). Aminophosphines: their chemistry and role as ligands and synthons. Applied Organometallic Chemistry, 23, 291–318. DOI: 10.1002/aoc.1515. http://dx.doi.org/10.1002/aoc.151510.1002/aoc.1515Search in Google Scholar
[10] Hayashita, T., Higuchi, T., Sawano, H., Marchand, A. P., Kumar, K. A., Bott, S. G., Mlinarić-Majerski, K., Šumanovac, T., Elkarim, N. S. A., Hwang, H. S., Talanova, G. G., & Bartsch, R. A. (2000). Molecular design of lipophilic disalicylic acid compounds with varying spacers for selective lead(II) extraction. Talanta, 52, 385–396. DOI: 10.1016/s0039-9140(00)00359-3. http://dx.doi.org/10.1016/S0039-9140(00)00359-310.1016/S0039-9140(00)00359-3Search in Google Scholar
[11] Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H., & Duverneuil, P. (2005). Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 39, 610–616. DOI: 10.1016/j.watres.2004.10.011. http://dx.doi.org/10.1016/j.watres.2004.10.01110.1016/j.watres.2004.10.011Search in Google Scholar
[12] Ikeda, K., & Abe, S. (1998). Liquid-liquid extraction of cationic metal complexes with p-nonylphenol solvent: application to crown and thiacrown ether complexes of lead (II) and copper (II). Analytica Chimica Acta, 363, 165–170. DOI: 10.1016/s0003-2670(98)00126-3. http://dx.doi.org/10.1016/S0003-2670(98)00126-310.1016/S0003-2670(98)00126-3Search in Google Scholar
[13] Jung, M. J., Venkateswaran, P., & Lee, Y. S. (2008). Solvent extraction of nickel(II) ions from aqueous solutions using triethylamine as extractant. Journal of Industrial and Engineering Chemistry, 14, 110–115. DOI: 10.1016/j.jiec.2007.08.004. http://dx.doi.org/10.1016/j.jiec.2007.08.00410.1016/j.jiec.2007.08.004Search in Google Scholar
[14] Kandil, F., Chebani, M. K., & Zoubi, W. A. (2012). Synthesis of macrocyclic bis-hydrazone and their use in metal cations extraction. International Scholarly Research Network Organic Chemistry, 2012, 208284. DOI: 10.5402/2012/208284. 10.5402/2012/208284Search in Google Scholar
[15] Lee, J. Y., Kumar, J. R., Kim, J. S., Park, H. K., & Yoon, H. S. (2009). Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-isooctylamine. Journal of Hazardous Materials, 168, 424–429. DOI: 10.1016/j.jhazmat.2009.02.056. http://dx.doi.org/10.1016/j.jhazmat.2009.02.05610.1016/j.jhazmat.2009.02.056Search in Google Scholar
[16] Li, L. Q., Zhong, H., Cao, Z. F., & Yuan, L. (2011). Recovery of copper(II) and nickel(II) from plating wastewater by solvent extraction. Chinese Journal of Chemical Engineering, 19, 926–930. DOI: 10.1016/s1004-9541(11)60073-6. http://dx.doi.org/10.1016/S1004-9541(11)60073-610.1016/S1004-9541(11)60073-6Search in Google Scholar
[17] Luiz Silva, E., dos Santos Roldan, P., & Giné, M. F. (2009). Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2 pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. Journal of Hazardous Materials, 171, 1133–1138. DOI: 10.1016/j.jhazmat.2009.06.127 http://dx.doi.org/10.1016/j.jhazmat.2009.06.12710.1016/j.jhazmat.2009.06.127Search in Google Scholar PubMed
[18] Mirzaei, M., Behzadi, M., Abadi, N. M., & Beizaei, A. (2011). Simultaneous separation /preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 186, 1739–1743. DOI: 10.1016/j.jhazmat.2010.12.080. http://dx.doi.org/10.1016/j.jhazmat.2010.12.08010.1016/j.jhazmat.2010.12.080Search in Google Scholar PubMed
[19] Mishra, S., & Devi, N. (2011). Extraction of copper(II) from hydrochloric acid solution by Cyanex 921. Hydrometallurgy, 107, 29–33. DOI: 10.1016/j.hydromet.2010.12.016. http://dx.doi.org/10.1016/j.hydromet.2010.12.01610.1016/j.hydromet.2010.12.016Search in Google Scholar
[20] Molaakbari, E., Mostafavi, A., & Afzali, D. (2011). Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination. Journal of Hazardous Materials, 185, 647–652. DOI: 10.1016/j.jhazmat.2010.09.067. http://dx.doi.org/10.1016/j.jhazmat.2010.09.06710.1016/j.jhazmat.2010.09.067Search in Google Scholar PubMed
[21] Nurminen, E. J., Mattinen, J.K., & Lönnberg, H. (1998). Kinetics and mechanism of tetrazole-catalyzed phosphoramidite alcoholysis. Journal of The Chemical Society, Perkin Transactions 2, 2, 1621–1628. DOI: 10.1039/a801250d. 10.1039/a801250dSearch in Google Scholar
[22] Okewole, A. I., Magwa, N. P., & Tshentu, Z. R. (2012). The separation of nickel(II) from base metal ions using 1-octyl-2-(2′-pyridyl)imidazole as extractant in a highly acidic sulfate medium. Hydrometallurgy, 121-124, 81–89. DOI: 10.1016/j.hydromet.2012.04.002. http://dx.doi.org/10.1016/j.hydromet.2012.04.00210.1016/j.hydromet.2012.04.002Search in Google Scholar
[23] Olivier, M. C., Dorfling, C., & Eksteen, J. J. (2012). Evaluating a solvent extraction process route incorporating nickel preloading of Cyanex 272 for the removal of cobalt and iron from nickel sulphate solutions. Minerals Engineering, 27–28, 37–51. DOI: 10.1016/j.mineng.2011.12.006. http://dx.doi.org/10.1016/j.mineng.2011.12.00610.1016/j.mineng.2011.12.006Search in Google Scholar
[24] Parodi, B., Savio, M., Martinez, L. D., Gil, R. A., & Smichowski, P. (2011). Study of carbon nanotubes and functionalized-carbon nanotubes as substrates for flow injection solid phase extraction associated to inductively coupled plasma with ultrasonic nebulization: Application to Cd monitoring in solid environmental samples. Microchemical Journal, 98, 225–230. DOI: 10.1016/j.microc.2011.02.002. http://dx.doi.org/10.1016/j.microc.2011.02.00210.1016/j.microc.2011.02.002Search in Google Scholar
[25] Ren, Z. Q., Zhang, W. D., Liu, Y. M., Dai, Y., & Cui, C. H. (2007). New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater. Chemical Engineering Science, 62, 6090–6101. DOI: 10.1016/j.ces.2007.06.005. http://dx.doi.org/10.1016/j.ces.2007.06.00510.1016/j.ces.2007.06.005Search in Google Scholar
[26] Rofouei, M. K., Sabouri, A., Ahmadalinezhad, A., & Ferdowsi, H. (2011). Solid phase extraction of ultra traces mercury (II) using octadecyl silica membrane disks modified by 1,3-bis(2-ethoxyphenyl)triazene (EPT) ligand and determination by cold vapor atomic absorption spectrometry. Journal of Hazardous Materials, 192, 1358–1363. DOI: 10.1016/j.jhazmat.2011.06.051. http://dx.doi.org/10.1016/j.jhazmat.2011.06.05110.1016/j.jhazmat.2011.06.051Search in Google Scholar PubMed
[27] Sarıöz, Ö., & Öznergiz, S. (2012). Aminophosphines derived from 1-amino-4 methylpiperazine: Synthesis, oxidation and complexation reactions. Phosphorus, Sulfur, and Silicon and the Related Elements, 187, 906–913. DOI: 10.1080/10426507.2011.650805. http://dx.doi.org/10.1080/10426507.2011.65080510.1080/10426507.2011.650805Search in Google Scholar
[28] Sereshti, H., Khojeh, V., & Samadi, S. (2011). Optimization of dispersive liquid-liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Talanta, 83, 885–890. DOI: 10.1016/j.talanta.2010.10.052. http://dx.doi.org/10.1016/j.talanta.2010.10.05210.1016/j.talanta.2010.10.052Search in Google Scholar PubMed
[29] Su, B. L., Ma, X. C., Xu, F., Chen, L. H., Fu, Z. Y., Moniotte, N., Maamar, S. B., Lamartine, R., & Vocanson, F. (2011). SBA-15 mesoporous silica coated with macrocyclic calix[4]arene derivatives: Solid extraction phases for heavy transition metal ions. Journal of Colloid and Interface Science, 360, 86–92. DOI: 10.1016/j.jcis.2011.03.084. http://dx.doi.org/10.1016/j.jcis.2011.03.08410.1016/j.jcis.2011.03.084Search in Google Scholar PubMed
[30] Surme, Y., Narin, I., Soylak, M., Yuruk, H., & Dogan, M. (2007). Cloud point extraction procedure for flame atomic absorption spectrometric determination of lead(II) in sediment and water samples. Microchimica Acta, 157, 193–199. DOI: 10.1007/s00604-006-0671-1. http://dx.doi.org/10.1007/s00604-006-0671-110.1007/s00604-006-0671-1Search in Google Scholar
[31] Tang, A. N., Ding, G. S., & Yan, X. P. (2005). Cloud point extraction for the determination of As(III) in water samples by electrothermal atomic absorption spectrometry. Talanta, 67, 942–946. DOI: 10.1016/j.talanta.2005.04.016. http://dx.doi.org/10.1016/j.talanta.2005.04.01610.1016/j.talanta.2005.04.016Search in Google Scholar PubMed
[32] Tian, M. M., Mu, F. T., Jia, Q., Quan, X. J., & Liao, W. P. (2011). Solvent extraction studies of zinc(II) and cadmium(II) from a chloride medium with mixtures of neutral organophosphorus extractants and amine extractants. Journal of Chemical & Engineering Data, 56, 2225–2229. DOI: 10.1021/je101245d. http://dx.doi.org/10.1021/je101245d10.1021/je101245dSearch in Google Scholar
[33] Toumi, N., Kajo, F., Fournier, D., Vocanson, F., Lamartine, R., & Dumazet-Bonnamour, I. (2008). A useful approach towards solid-liquid extraction of metal cations with unsupported calixarenes. Materials Science and Engineering: C, 28, 645–652. DOI: 10.1016/j.msec.2007.10.009. http://dx.doi.org/10.1016/j.msec.2007.10.00910.1016/j.msec.2007.10.009Search in Google Scholar
[34] Tsukuda, T., Miyoshi, R., Esumi, A., Yamagiwa, A., Dairiki, A., Matsumoto, K., & Tsubomura, T. (2012). Sulfur transfer reaction from phosphine sulfides to phosphines assisted by metal ions. Inorganica Chimica Acta, 384, 149–153. DOI: 10.1016/j.ica.2011.11.049. http://dx.doi.org/10.1016/j.ica.2011.11.04910.1016/j.ica.2011.11.049Search in Google Scholar
[35] Wang, Q. H., Chang, X. J., Li, D. D., Hu, Z., Li, R. J., & He, Q. (2011). Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite. Journal of Hazardous Materials, 186, 1076–1081. DOI: 10.1016/j.jhazmat.2010.11.107. http://dx.doi.org/10.1016/j.jhazmat.2010.11.10710.1016/j.jhazmat.2010.11.107Search in Google Scholar PubMed
[36] Zoubi, W. A. L., Kandil, F., & Chebani, M. K. (2011). The synthesis of (N2O2S2)-Schiff base ligands and investigation of their ion extraction capability from aqueous media. Spectrochimica Acta Part A, 79, 1909–1914. DOI: 10.1016/j.saa.2011.05.087. http://dx.doi.org/10.1016/j.saa.2011.05.08710.1016/j.saa.2011.05.087Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
- Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium
- Copper hydride-catalyzed reduction of electron-deficient olefins
- Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
- Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic
- Synthesis and characterisation of Cu(II), Ni(II), and Zn(II) complexes of furfural derived from aroylhydrazones bearing aliphatic groups and their interactions with DNA
- Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
- Influence of the B-site cation nature on dielectric properties of Ca2XBiO6 (X = Dy, Fe, Al) double perovskite
- Stereoselective total synthesis of protected sulfamisterin and its analogues
- Investigation of 3,5-dichlorosalicylate-copper(II)-(3-pyridylmethanol or N,N′-diethylnicotinamide) complex systems by EPR spectroscopy
- Heavy-metal extraction capability of chalcogenoic aminophosphines derived from 1-amino-4-methylpiperazine
- Electrical conductivity of systems based on Na3AlF6-SiO2 melt
Articles in the same Issue
- Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
- Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium
- Copper hydride-catalyzed reduction of electron-deficient olefins
- Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
- Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic
- Synthesis and characterisation of Cu(II), Ni(II), and Zn(II) complexes of furfural derived from aroylhydrazones bearing aliphatic groups and their interactions with DNA
- Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
- Influence of the B-site cation nature on dielectric properties of Ca2XBiO6 (X = Dy, Fe, Al) double perovskite
- Stereoselective total synthesis of protected sulfamisterin and its analogues
- Investigation of 3,5-dichlorosalicylate-copper(II)-(3-pyridylmethanol or N,N′-diethylnicotinamide) complex systems by EPR spectroscopy
- Heavy-metal extraction capability of chalcogenoic aminophosphines derived from 1-amino-4-methylpiperazine
- Electrical conductivity of systems based on Na3AlF6-SiO2 melt