Home Rheological properties of functionalised thermosensitive copolymers for injectable applications in medicine
Article
Licensed
Unlicensed Requires Authentication

Rheological properties of functionalised thermosensitive copolymers for injectable applications in medicine

  • Ivana Chamradová EMAIL logo , Lucy Vojtová , Lenka Michlovská , Petr Poláček and Josef Jančář
Published/Copyright: July 12, 2012
Become an author with De Gruyter Brill

Abstract

Functionalised triblock copolymers based on poly((lactic acid)-co-(glycolic acid)) and poly(ethylene glycol) (PLGA-PEG-PLGA) further modified with 3-methylenetetrahydrofuran-2,5-dione (itaconic anhydride; ITA) exhibited sol-gel transition induced by increasing temperature. Rheological properties of a series of ITA/PLGA-PEG-PLGA/ITA copolymer concentrations (6–24 mass %) in deionised Milli-Q water were studied by both the test tube inverting method (TTIM) and rheometer. The gel stiffness increased with the polymer concentration shifting the gel point of the copolymer to the lower temperature. The present study demonstrates that each method describes a sol-gel transition, but the combined method gives comprehensive information about changes in colour, viscosity, elastic and loss moduli. Characterisation of such a gel is necessary for its further use, in order to determine whether the material is appropriate as an injectable biomedical hydrogel.

[1] Adler, J., Wang, S. F., & Lardy, H. A. (1957). The metabolism of itaconic acid by liver mitochondria. Journal of Biological Chemistry, 229, 865–879. 10.1016/S0021-9258(19)63691-4Search in Google Scholar

[2] Lee, D. S., Shim, M. S., Kim, S. W., Lee, H., Park, I., & Chang, T. (2001). Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromolecular Rapid Communications, 22, 587–592. DOI: 10.1002/1521-3927(20010501)22:8〈587::AIDMARC587〉3.0.CO;2-8. http://dx.doi.org/10.1002/1521-3927(20010501)22:8<587::AID-MARC587>3.0.CO;2-810.1002/1521-3927(20010501)22:8<587::AID-MARC587>3.0.CO;2-8Search in Google Scholar

[3] Michlovská, L., Vojtová, L., Mravcová, L., Hermanová, S., Kučerík, J., & Jančář, J. (2010). Functionalized conditions of PLGA-PEG-PLGA copolymer with itaconic anhydride. Macromolecular Symposia, 295, 119–124. DOI: 10.1002/masy.200900071. http://dx.doi.org/10.1002/masy.20090007110.1002/masy.200900071Search in Google Scholar

[4] Pratoomsoot, C., Tanioka, H., Hori, K., Kawasaki, K., Kinoshita, S., Tighe, P. J., Dua, H., Shakesheff, K. M.,& Rose, F. R. A. J. (2008). A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials, 29, 272–281. DOI: 10.1016/j.biomaterials.2007.09.031. http://dx.doi.org/10.1016/j.biomaterials.2007.09.03110.1016/j.biomaterials.2007.09.031Search in Google Scholar

[5] Shim, M. S., Lee, H. T., Shim, W. S., Park, I. S., Lee, H. J., Chang, T. H., Kim, S. W., & Lee, D. S. (2001). Poly(d,l-lactid acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (d,l-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. Journal of Biomedical Materials Research, 61, 188–196. DOI: 10.1002/ jbm.10164. http://dx.doi.org/10.1002/jbm.1016410.1002/jbm.10164Search in Google Scholar

[6] Winter, H. H., & Chambon, F. (1986). Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology, 13, 367–382. DOI: 10.1122/1.549853. http://dx.doi.org/10.1122/1.54985310.1122/1.549853Search in Google Scholar

[7] Yu, L., Chang, G. T., Zhang, H., & Ding, J. D. (2007). Temperature-induced spontaneous sol-gel transitions of poly (d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-bpoly(d,l-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry, 45, 1122–1133. DOI: 10.1002/pola.21876. http://dx.doi.org/10.1002/pola.2187610.1002/pola.21876Search in Google Scholar

[8] Yu, L., Zhang, H., & Ding, J. (2010). Effects of precipitate agents on temperature-responsive sol-gel transitions of PLGA-PEG-PLGA copolymers in water. Colloid & Polymer Science, 288, 1151–1159. DOI: 10.1007/s00396-010-2246-2. http://dx.doi.org/10.1007/s00396-010-2246-210.1007/s00396-010-2246-2Search in Google Scholar

[9] Yu, L., Zhang, Z., & Ding, J. (2012). In vitro degradation and protein release of transport and opaque physical hydrogels of block copolymers at body temperature. Macromolecular Research, 20, 234–243. DOI: 10.1007/s13233-012-0049-7. http://dx.doi.org/10.1007/s13233-012-0049-710.1007/s13233-012-0049-7Search in Google Scholar

[10] Zentner, G. M., Rathi, R., Shin, C., McRea, J. C., Seo, M. H., Oh, H., Rhee, B. G., Mestecky, J., Moldoveanu, Z., Morgan, M., & Weitman, S. (2001). Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. Journal of Controlled Release, 72, 203–215. DOI: 10.1016/s0168-3659(01)00276-0. http://dx.doi.org/10.1016/S0168-3659(01)00276-010.1016/S0168-3659(01)00276-0Search in Google Scholar

Published Online: 2012-7-12
Published in Print: 2012-10-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0210-y/html
Scroll to top button