Abstract
An efficient synthesis of multidentate polypyridine ligands, 3,5-bis(2,2′-bipyridin-4-ylethynyl)benzoic acid and 3,5-bis(2,5-bis(2-pyridyl)-pyridin-4-ylethynyl)benzoic acid, with potential application in the production of ruthenium dyes for dye-sensitised solar cells was developed. Isolation of intermediate products and final compounds is simple and the yields are very high. The ligands obtained can be used in the synthesis of dendritic analogues of well known and very efficient N3 dye and “black dye”.
[1] Alston, J. R., Kobayashi, S., Younts, T. J., & Poler, J. C. (2010). Synthesis and characterization of rigid +2 and +3 heteroleptic dinuclear ruthenium(II) complexes. Polyhedron, 29, 2696–2702. DOI: 10.1016/j.poly.2010.06.012. http://dx.doi.org/10.1016/j.poly.2010.06.01210.1016/j.poly.2010.06.012Search in Google Scholar
[2] Balzani, V., Ceroni, P., Juris, A., Venturi, M., Campagna, S., Puntoriero, F., & Serroni, S. (2001). Dendrimers based on photoactive metal complexes. Recent advances. Coordination Chemistry Reviews, 219–221, 545–572. DOI: 10.1016/s0010-8545(01)00351-4. http://dx.doi.org/10.1016/S0010-8545(01)00351-410.1016/S0010-8545(01)00351-4Search in Google Scholar
[3] Bodige, S., Torres, A. S., Maloney, D. J., Tate, D., Kinsel, G. R., Walker, A. K., & MacDonnell, F. M. (1997). First-generation chiral metallodendrimers: Stereoselective synthesis of rigid D3-symmetric tetranuclear ruthenium complexes. Journal of the American Chemical Society, 119, 10364–10369. DOI: 10.1021/ja9720467. http://dx.doi.org/10.1021/ja972046710.1021/ja9720467Search in Google Scholar
[4] Campagna, S., Di Pietro, C., Loiseau, F., Maubert, B., McClenaghan, N., Passalacqua, R., Puntoriero, F., Ricevuto, V., & Serroni, S. (2002). Recent advances in luminescent polymetallic dendrimers containing the 2,3-bis(2′-pyridyl)pyrazine bridging ligand. Coordination Chemistry Reviews, 229, 67–74. DOI: 10.1016/s0010-8545(02)00042-5. http://dx.doi.org/10.1016/S0010-8545(02)00042-510.1016/S0010-8545(02)00042-5Search in Google Scholar
[5] Dutta, S., Baitalik, S., Ghosh, M., Flörke, U., & Nag, K. (2011). Structural, photophysical and electrochemical studies of [RuN6]2+ complexes having polypyridine and azole mixeddonor sites. Inorganica Chimica Acta, 372, 227–236. DOI: 10.1016/j.ica.2011.01.082. http://dx.doi.org/10.1016/j.ica.2011.01.08210.1016/j.ica.2011.01.082Search in Google Scholar
[6] Funaki, T., Yanagida, M., Onozawa-Komatsuzaki, N., Kawanishi, Y., Kasuga, K., & Sugihara, H. (2009). Ruthenium (II) complexes with π expanded ligand having phenylene-ethynylene moiety as sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 93, 729–732. DOI: 10.1016/j.solmat.2008.09.011. http://dx.doi.org/10.1016/j.solmat.2008.09.01110.1016/j.solmat.2008.09.011Search in Google Scholar
[7] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110, 6595–6663. DOI: 10.1021/cr900356p. http://dx.doi.org/10.1021/cr900356p10.1021/cr900356pSearch in Google Scholar PubMed
[8] Hagfeldt, A., & Grätzel, M. (1995). Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 95, 49–68. DOI: 10.1021/cr00033a003. http://dx.doi.org/10.1021/cr00033a00310.1021/cr00033a003Search in Google Scholar
[9] Hagfeldt, A., & Grätzel, M. (2000). Molecular photovoltaics. Accounts of Chemical Research, 33, 269–277. DOI: 10.1021/ar980112j. http://dx.doi.org/10.1021/ar980112j10.1021/ar980112jSearch in Google Scholar PubMed
[10] Huang, W., & Han, C. D. (2006). Ruthenium(II) complexinduced dispersion of montmorillonite in a segmented mainchain liquid-crystalline polymer having side-chain terpyridine group. Macromolecules, 39, 8207–8209. DOI: 10.1021/ma0619637. http://dx.doi.org/10.1021/ma061963710.1021/ma0619637Search in Google Scholar
[11] Günes, S., & Sariciftci, N. S. (2008). Hybrid solar cells. Inorganica Chimica Acta, 361, 581–588. DOI: 10.1016/j.ica.2007.06.042. http://dx.doi.org/10.1016/j.ica.2007.06.04210.1016/j.ica.2007.06.042Search in Google Scholar
[12] Kalinowska-Lis, U., Żurowska, B., & Ochocki, J. (2011). Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions. Chemical Papers, 65, 660–666. DOI: 10.2478/s11696-011-0056-8. http://dx.doi.org/10.2478/s11696-011-0056-810.2478/s11696-011-0056-8Search in Google Scholar
[13] Klein, C., Baranoff, E., Grätzel, M., & Nazeeruddin, M. K. (2011). Convenient synthesis of tridentate 2,6-di(pyrazol-1-yl)-4-carboxypyridine and tetradentate 6,6′-di(pyrazol-1-yl)-4,4′-dicarboxy-2,2′-bipyridine ligands. Tetrahedron Letters, 52, 584–587. DOI: 10.1016/j.tetlet.2010.12.001. http://dx.doi.org/10.1016/j.tetlet.2010.12.00110.1016/j.tetlet.2010.12.001Search in Google Scholar
[14] Li, B., Wang, L., Kang, B., Wang, P., & Qiu, Y. (2006). Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90, 549–573. DOI: 10.1016/j.solmat.2005.04.039. http://dx.doi.org/10.1016/j.solmat.2005.04.03910.1016/j.solmat.2005.04.039Search in Google Scholar
[15] Matsuda, K., Stone, M. T., & Moore, J. S. (2002). Helical pitch of m-phenylene ethynylene foldamers by double spin labeling. Journal of the American Chemical Society, 124, 11836–11837. DOI: 10.1021/ja027437m. http://dx.doi.org/10.1021/ja027437m10.1021/ja027437mSearch in Google Scholar PubMed
[16] Muro, M. L., & Castellano, F. N. (2007). Room temperature photoluminescence from [Pt(4′-C≡CR-tpy)Cl]+ complexes. Dalton Transactions, 2007, 4659–4665. DOI: 10.1039/b7098 86c. http://dx.doi.org/10.1039/b709886cSearch in Google Scholar
[17] O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740. DOI: 10.1038/353737a0. http://dx.doi.org/10.1038/353737a010.1038/353737a0Search in Google Scholar
[18] Puntoriero, F., Campagna, S., Stadler, A. M., & Lehn, J. M. (2008). Luminescence properties and redox behavior of Ru(II) molecular racks. Coordination Chemistry Reviews, 252, 2480–2492. DOI: 10.1016/j.ccr.2007.12.009. http://dx.doi.org/10.1016/j.ccr.2007.12.00910.1016/j.ccr.2007.12.009Search in Google Scholar
[19] Puntoriero, F., Sartorel, A., Orlandi, M., La Ganga, G., Serroni, S., Bonchio, M., Scandola, F., & Campagna, S. (2011). Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coordination Chemistry Reviews, 255, 2594–2601. DOI: 10.1016/j.ccr.2011.01.026. http://dx.doi.org/10.1016/j.ccr.2011.01.02610.1016/j.ccr.2011.01.026Search in Google Scholar
[20] Spiccia, L., Deacon, G. B., & Kepert, C. M. (2004). Synthetic routes to homoleptic and heteroleptic ruthenium(II) complexes incorporating bidentate imine ligands. Coordination Chemistry Reviews, 248, 1329–1341. DOI: 10.1016/j.ccr.2004.04.008. http://dx.doi.org/10.1016/j.ccr.2004.04.00810.1016/j.ccr.2004.04.008Search in Google Scholar
[21] Tan, L. F., Wang, F., Chao, H., Zhang, S., Fei, J. J., & Ji, L. N. (2008). DNA interactions of the functionalized (mixed polypyridine)ruthenium(II) complex bis(2,2′-bipyridine-κN 1,κN 1′)(methyldipyrido[3,2-a:2′,3′-c]phenazine-11-carboxylate-κN 4,κN 5)ruthenium(2+) ([Ru(bpy)2 (dppz-11-CO2Me)]2+). Helvetica Chimica Acta, 91, 1251–1260. DOI: 10.1002/hlca.200890136. http://dx.doi.org/10.1002/hlca.20089013610.1002/hlca.200890136Search in Google Scholar
[22] Vougioukalakis, G. C., Philippopoulos, A. I., Stergiopoulos, T., & Falaras, P. (2011). Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews, 255, 2602–2621. DOI: 10.1016/j.ccr.2010.11.006. http://dx.doi.org/10.1016/j.ccr.2010.11.00610.1016/j.ccr.2010.11.006Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method
Articles in the same Issue
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method