Home Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
Article
Licensed
Unlicensed Requires Authentication

Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA

  • Sameena Yousuf EMAIL logo and Israel Enoch
Published/Copyright: June 19, 2012
Become an author with De Gruyter Brill

Abstract

The interaction of 6-methoxyflavanone (6MF, 6-methoxy-2-phenyl-4H-1-benzopyran-4-one) with calf thymus DNA (ctDNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, and cyclic voltammetry in the presence and absence of β-cyclodextrin (β-CD) acting as capping agent. Molecular modelling was used to optimise the study of 6MF-β-CD and 6MF-DNA interactions. Enhancement in the fluorescence intensity of 6MF was observed due to the formation of 1 : 1 complex with β-CD. In the presence and absence of DNA, 6MF showed different characteristics such as hyperchromic effect, red shift of absorption spectra and fluorescence quenching of 6MF due to binding between 6MF and ctDNA. The nature of the binding group was found to be different for the 6MF-ctDNA and 6MF-ctDNA-β-CD systems. An increase in fluorescence intensity was observed for the 6MF-ctDNA system while varying the concentration of β-CD due to encapsulation of a part of 6MF in cyclodextrin. The results are compatible with the possibility of the interaction of dihydrobenzopyran-4-one moiety of 6MF with ctDNA as well as with β-CD. Cyclic voltammetric studies confirmed the binding interaction between 6MF and ctDNA in the absence and presence of β-CD and molecular modelling explains the site of the interaction of 6MF with cyclodextrin and ctDNA.

[1] Bagherwal, A., Patidar, D. K., & Sharma, P. (2010). Studies on formulation and evaluation of floating tablets of ciprofloxacin HCl. Pharmacie Globale (IJCP), 1(4), 1–4. Search in Google Scholar

[2] Banville, D. L., Marzilli, L. G., Strickland, J. A., & Wilson, W. D. (1986). Comparison of the effects of cationic porphyrins on DNA properties: Influence of GC content of native and synthetic polymers. Biopolymers, 25, 1837–1858. DOI: 10.1002/bip.360251003. http://dx.doi.org/10.1002/bip.36025100310.1002/bip.360251003Search in Google Scholar

[3] Barik, A., Priyadarsini, K. I., & Mohan, H. (2003). Photophysical studies on binding of curcumin to bovine serum albumin. Photochemistry and Photobiology, 77, 597–603. DOI: 10.1562/0031-8655(2003)0770597PSOBOC2.0.CO2. http://dx.doi.org/10.1562/0031-8655(2003)077<0597:PSOBOC>2.0.CO;210.1562/0031-8655(2003)077<0597:PSOBOC>2.0.CO;2Search in Google Scholar

[4] Bernstein, H. J. (2011). RasMol 2.7.5.2. Molecular graphics visualisation tool. Based on RasMol 2.6 by Roger Sayle Biomolecular structures group. Stevenage, Hertfordshire, UK: Glaxo Wellcome Research & Development. Search in Google Scholar

[5] Cai, C., Chen, X., & Ge, F. (2010). Analysis of interaction between tamoxifen and ctDNA in vitro by multispectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76, 202–206. DOI: 10.1016/j.saa.2010.03.017. http://dx.doi.org/10.1016/j.saa.2010.03.01710.1016/j.saa.2010.03.017Search in Google Scholar

[6] Chadha, R., Kashid, N., & Saini, A. (2004). Account of analytical technique employed for the determination of thermodynamics of inclusion complexation of drugs with cyclodextrins. Journal of Scientific and Industrial Research, 63, 211–229. DOI: 10.1002/chin.200451270. 10.1002/chin.200451270Search in Google Scholar

[7] Coates, C. G., Jacquet, L., MacGarray, J. J., Bell, S. E. J., Al-Obaidi, A. H. R., & Kelly, J. M. (1996). Resonance-Raman probing of the interaction between dipyridophenazine complexes of Ruthenium(II) and DNA. Chemical Communications, 1996, 35–36. DOI: 10.1039/cc9960000035. http://dx.doi.org/10.1039/cc9960000035Search in Google Scholar

[8] Dzięgielewski, J., Ślusarski, B., Konitz, A., Składanowski, A., & Konopa, J. (2002). Intercalation of imidazoacridinones to DNA and its relevance to cytotoxic and antitumor activity. Biochemical Pharmacology, 63, 1653–1662. DOI: 10.1016/s0006-2952(02)00916-4. http://dx.doi.org/10.1016/S0006-2952(02)00916-410.1016/S0006-2952(02)00916-4Search in Google Scholar

[9] Enoch, I. V. M. V., & Swaminathan, M. (2006). Stoichiometrically different inclusion complexes of 2-aminofluorene and 2-amino-9-hydroxyfluorene in β-cyclodextrin: A spectrofluorimetric study. Journal of Fluorescence, 16, 697–704. DOI: 10.1007/s10895-006-0112-x. http://dx.doi.org/10.1007/s10895-006-0112-x10.1007/s10895-006-0112-xSearch in Google Scholar

[10] Ensafi, A. A., Hajian, R., & Ebrahimi, S. (2009). Study on the interaction between morin-Bi (III) complex and DNA with the use of methylene blue dye as a fluorophor probe. Journal of the Brazilian Chemical Society, 20, 266–276. DOI: 10.1590/s0103-50532009000200011. http://dx.doi.org/10.1590/S0103-5053200900020001110.1590/S0103-50532009000200011Search in Google Scholar

[11] Fernandes, C. M., & Veiga, F. J. B. (2002). Effect of the hydrophobic nature of triacetyl-β-cyclodextrin on the complexation with nicardipine hydrochloride: Physicochemical and dissolution properties of the kneaded and spray-dried complexes. Chemical and Pharmaceutical Bulletin, 50, 1597–1602. DOI: 10.1248/cpb.50.1597. http://dx.doi.org/10.1248/cpb.50.159710.1248/cpb.50.1597Search in Google Scholar

[12] Firdaus, F., Fatma, K., Azam, M., Khan, S. N., Khan, A. U., & Shakir, M. (2008). Template synthesis and physicochemical studies of 14-membered hexaazmacrocyclic complexes with Co(II), Ni(II), Cu(II) and Zn(II): a comparative spectroscopic approach on DNA binding with Cu(II) and Ni(II) complexes. Transition Metal Chemistry, 33, 467–473. DOI: 10.1007/s11243-008-9066-y. http://dx.doi.org/10.1007/s11243-008-9066-y10.1007/s11243-008-9066-ySearch in Google Scholar

[13] Kim, H. M., Kim, H. W., & Jung, S. H. (2008). Aqueous solubility enhancement of some flavones by complexation with cyclodextrins. Bulletin of the Korean Chemical Society, 29, 590–594. DOI: 10.5012/bkcs.2008.29.3.590. http://dx.doi.org/10.5012/bkcs.2008.29.3.59010.5012/bkcs.2008.29.3.590Search in Google Scholar

[14] Kobayashi, T., Tobita, S., Kobayashi, M., Imajyo, T., Chikira, M., Yashiro, M., & Fuji, Y. (2007). Effects of N-alkyl and ammonium groups on the hydrolytic cleavage of DNA with a Cu(II)TACH (1,3,5-triaminocyclohexane) complex. Speciation, kinetic, and DNA-binding studies for reaction mechanism. Journal of Inorganic Biochemistry, 101, 348–361. DOI: 10.1016/j.jinorgbio.2006.10.011. http://dx.doi.org/10.1016/j.jinorgbio.2006.10.01110.1016/j.jinorgbio.2006.10.011Search in Google Scholar

[15] Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy. New York, NY, USA: Plenum Press. 10.1007/978-1-4757-3061-6Search in Google Scholar

[16] Lu, Y., Wang, G. K., Lv, J., Zhang, G. S., & Liu, Q. F. (2011). Study on the interaction of an anthracycline disaccharide with DNA by spectroscopic techniques and molecular modeling. Journal of Fluorescence, 21, 409–414. DOI: 10.1007/s10895-010-0729-7. http://dx.doi.org/10.1007/s10895-010-0729-710.1007/s10895-010-0729-7Search in Google Scholar

[17] Ren, W., Qiao, Z., Wang, H., Zhu, L., & Zhang, L. (2003). Flavonoids: Promising anticancer agents. Medicinal Research Reviews, 23, 519–534. DOI: 10.1002/med.10033. http://dx.doi.org/10.1002/med.1003310.1002/med.10033Search in Google Scholar

[18] Schrödinger (2009). Glide: A complete solution for ligand-receptor docking [computer software]. Portland, OR, USA: Schrödinger, LLC. Search in Google Scholar

[19] Swaroop, S., Mishra, B., & Priyadarsini, K. I. (2007). β-Cyclodextrin inclusion complex of curcumin. BARC Newsletter, 285, 208–212. Search in Google Scholar

[20] Wang, S., Peng, T., & Yang, C. F. (2003). Electrochemical determination of interaction parameters for DNA and mitoxantrone in an irreversible redox process. Biophysical Chemistry, 104, 239–248. DOI: 10.1016/s0301-4622(02)00371-x. http://dx.doi.org/10.1016/S0301-4622(02)00371-X10.1016/S0301-4622(02)00371-XSearch in Google Scholar

[21] Wang, Y., & Zhou, A. (2007). Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems. Journal of Photochemistry and Photobiology A: Chemistry, 190, 121–127. DOI: 10.1016/j.jphotochem.2007.03.020. http://dx.doi.org/10.1016/j.jphotochem.2007.03.02010.1016/j.jphotochem.2007.03.020Search in Google Scholar

[22] Wu, F. Y., Xie, F. Y., Wu, Y. M., & Hong, J. I. (2008). Interaction of a new fluorescent probe with DNA and its use in determination of DNA. Journal of Fluorescence, 18, 175–181. DOI: 10.1007/s10895-007-0261-6. http://dx.doi.org/10.1007/s10895-007-0261-610.1007/s10895-007-0261-6Search in Google Scholar

[23] Yang, G. J., Xu, J. J., Chen, H. Y., & Leng, Z. Z. (2004). Studies on the interaction between rutin and DNA in the absence and presence of β-cyclodextrin by electrochemical and spectroscopic methods. Chinese Journal of Chemistry, 22, 1325–1329. DOI: 10.1002/cjoc.20040221122. http://dx.doi.org/10.1002/cjoc.2004022112210.1002/cjoc.20040221122Search in Google Scholar

[24] Zhao, G. C., Zhu, J. J., Zhang, J. J., & Chen, H. Y. (1999). Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Analytica Chimca Acta, 394, 337–344. DOI: 10.1016/s0003-2670(99)00292-5. http://dx.doi.org/10.1016/S0003-2670(99)00292-510.1016/S0003-2670(99)00292-5Search in Google Scholar

Published Online: 2012-6-19
Published in Print: 2012-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0180-0/pdf
Scroll to top button