Home Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil
Article
Licensed
Unlicensed Requires Authentication

Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil

  • Wan Isahak EMAIL logo , Manal Ismail , Jamaliah Jahim , Jumat Salimon and Mohd Yarmo
Published/Copyright: January 8, 2012
Become an author with De Gruyter Brill

Abstract

In this work, the performance of three heterogeneous catalysts, namely potassium hydroxide/γ-alumina, bulk calcium oxide, and nano-calcium oxide, in comparison with the homogeneous potassium hydroxide was studied in the transesterification of palm oil to produce methyl esters and glycerol. The physical and chemical properties of the heterogeneous catalysts were thoroughly characterised and determined using a number of analytical methods to assess their catalytic activities prior to transesterification. The reaction products were analysed using liquid chromatography and their properties were quantified based on the American Society of Testing and Materials and United State Pharmacopoeia standard methods. At the 65°C reaction temperature, the oil-to-methanol mole ratio of 1: 15, 2.5 h of the reaction time, and catalyst (φ r = 1: 40), potassium hydroxide, potassium hydroxide/γ-alumina, nano-calcium oxide, and bulk calcium oxide gave methyl ester yields of 97 %, 96 %, 94 %, and 90 %, respectively. The impregnation of γ-alumina with potassium hydroxide displayed a catalytic performance comparable with the performance of potassium hydroxide where the former could be physically separated via filtration resulting in a relatively greater purity of products. Other advantages included the longer reusability of the catalyst and more active sites with lower by-product formation.

[1] American Society of Testing and Materials (1992). ASTM standards: Standard test method for heat of combustion of liquid hydrocarbon fuels by Bomb Calorimeter. D 240-02. Philadelphia, PA, USA. Search in Google Scholar

[2] American Society of Testing and Materials (1999). ASTM standards: Standard test method for acidity of hydrocarbon liquids and their distillation residues. D 1093-98. Philadelphia, PA, USA. Search in Google Scholar

[3] American Society of Testing and Materials (2000). ASTM standards: Standard test method for kinematic viscosity of transparent and opaque liquids (and the calculation of dynamic viscosity). D 445-03. Philadelphia, PA, USA. Search in Google Scholar

[4] American Society of Testing and Materials (2002). ASTM standards: Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. D 1298-99. Philadelphia, PA, USA. Search in Google Scholar

[5] Baabad, M., & Ismail, M. (2008). Biodiesel production using potassium based heterogeneous catalyst on γ-alumina support. In Proceedings on 15th Regional Symposium on Chemical Engineering (RSCE) in conjunction with the 22nd Sym posium of Malaysian Chemical Engineers (SOMChe), December 2–3, 2008 (pp. 911–916). Kuala Lumpur, Malaysia. Search in Google Scholar

[6] Degirmenci, L., Oktar, N., & Dogu, G. (2010). ETBE synthesis over silicotungstic acid and tungstophosphoric acid catalysts calcined at different temperatures. Fuel Processing Technology, 91, 737–742. DOI: 10.1016/j.fuproc.2010.02.007. http://dx.doi.org/10.1016/j.fuproc.2010.02.00710.1016/j.fuproc.2010.02.007Search in Google Scholar

[7] Isahak, W. N. R. W., Ismail, M., Yarmo, M. A., Jahim, J. M., & Salimon, J. (2010). Purification of crude glycerol from transesterification RBD palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation. Journal of Applied Sciences, 10, 2590–2595. DOI: 10.3923/jas.2010.2590.2595. http://dx.doi.org/10.3923/jas.2010.2590.259510.3923/jas.2010.2590.2595Search in Google Scholar

[8] Kafuku, G., Lee, K. T., & Mbarawa, M. (2010). The use of sulphated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil. Chemical Papers, 64, 734–740. DOI: 10.2478/s11696-010-0063-1. http://dx.doi.org/10.2478/s11696-010-0063-110.2478/s11696-010-0063-1Search in Google Scholar

[9] Kawashima, A., Matsubara, K., & Honda, K. (2009). Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology, 100, 696–700. DOI: 10.1016/j.biortech.2008.06.049. http://dx.doi.org/10.1016/j.biortech.2008.06.04910.1016/j.biortech.2008.06.049Search in Google Scholar

[10] Koper, O., Li, Y. X., & Klabunde, K. J. (1993). Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide. Chemistry of Materials, 5, 500–505. DOI: 10.1021/cm00028a017. http://dx.doi.org/10.1021/cm00028a01710.1021/cm00028a017Search in Google Scholar

[11] Lapis, A. A. M., de Oliviera, L. F., Neto, B. A. D., & Dupont, J. (2008). Ionic liquid supported acid/base-catalyzed production of biodiesel. ChemSusChem, 1, 759–762. DOI: 10.1002/cssc.200800077. http://dx.doi.org/10.1002/cssc.20080007710.1002/cssc.200800077Search in Google Scholar

[12] Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207–219. DOI: 10.1016/s0920-5861(98)00050-9. http://dx.doi.org/10.1016/S0920-5861(98)00050-910.1016/S0920-5861(98)00050-9Search in Google Scholar

[13] Liu, X., He, H., Wang, Y., & Zhu, S. (2007). Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications, 8, 1107–1111. DOI: 10.1016/j.catcom.2006.10.026. http://dx.doi.org/10.1016/j.catcom.2006.10.02610.1016/j.catcom.2006.10.026Search in Google Scholar

[14] Moulder, J. F., Stickle, W. F., Sobol, P. E., & Bomben, K. D. (1992). Handbook of X-ray photoelectron spectroscopy. A reference book of standard spectra for identification and interpretation of XPS data. Eden Prairie, MN, USA: Perkin-Elmer, Physical Electronics Division. Search in Google Scholar

[15] Noiroj, K., Intarapong, P., Luengnaruemitchai, A., & Jai-In, S. (2009). A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy, 34, 1145–1150. DOI: 10.1016/j.renene.2008.06.015. http://dx.doi.org/10.1016/j.renene.2008.06.01510.1016/j.renene.2008.06.015Search in Google Scholar

[16] Ryan, T. W., Dodge, L. G., & Callahan, T. J. (1984). The effects of vegetable oil properties on injection and combustion in two different diesel engines. Journal of the American Oil Chemists’ Society, 61, 1610–1619. DOI: 10.1007/bf02541645. http://dx.doi.org/10.1007/BF0254164510.1007/BF02541645Search in Google Scholar

[17] Sharmer, K. (1993). Umweltaspekte bei Herstellung und Verwendung von TME. U: RME Hearing, Vienna: Ministry for Agriculture. Search in Google Scholar

[18] Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111–133. DOI: 10.1016/s1364-0321(99)00013-1. http://dx.doi.org/10.1016/S1364-0321(99)00013-110.1016/S1364-0321(99)00013-1Search in Google Scholar

[19] Sun, H., Ding, Y., Duan, J., Zhang, Q., Wang, Z., Lou, H., & Zheng, X. (2010). Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresource Technology, 101, 953–958. DOI: 10.1016/j.biortech.2009.08.089. http://dx.doi.org/10.1016/j.biortech.2009.08.08910.1016/j.biortech.2009.08.089Search in Google Scholar

[20] Tang, Z. X., Claveau, D., Corcuff, R., Belkacemi, K., & Arul, J. (2008). Preparation of nano-CaO using thermaldecomposition method. Materials Letters, 62, 2096–2098. DOI: 10.1016/j.matlet.2007.11.053. United State Pharmacopoeia (2003). U.S. Pharmacopoeia and Natural Formulary: USP26-NF21. Rockville, MD, USA. http://dx.doi.org/10.1016/j.matlet.2007.11.05310.1016/j.matlet.2007.11.053Search in Google Scholar

[21] Xie, W., Peng, H., & Chen, L. (2006). Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 300, 67–74. DOI: 10.1016/j.apcata.2005.10.048. http://dx.doi.org/10.1016/j.apcata.2005.10.04810.1016/j.apcata.2005.10.048Search in Google Scholar

[22] Zabeti, M., Daud, W. M. A. W., & Aroua, M. K. (2009). Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, 366, 154–159. DOI: 10.1016/j.apcata.2009.06.047. http://dx.doi.org/10.1016/j.apcata.2009.06.04710.1016/j.apcata.2009.06.047Search in Google Scholar

[23] Zhang, Y., Debé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89, 1–16. DOI: 10.1016/s0960-8524(03)00040-3. 10.1016/S0960-8524(03)00040-3Search in Google Scholar

Published Online: 2012-1-8
Published in Print: 2012-3-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0125-z/html?lang=en
Scroll to top button