Home Oxidation of 3,5-di-tert-butylcatechol in the presence of V-polyoxometalate
Article
Licensed
Unlicensed Requires Authentication

Oxidation of 3,5-di-tert-butylcatechol in the presence of V-polyoxometalate

  • Xue-Feng Hu EMAIL logo and Lei Wu
Published/Copyright: January 8, 2012
Become an author with De Gruyter Brill

Abstract

The oxidase and dioxygenase reactions of 3,5-di-tert-butylcatechol (DTBC, I) in the presence of V-polyoxometalate were studied. It was found that the addition of a Lewis base quenched the V-polyoxometalate-catalysed catechol dioxygenase reaction and catalysed the oxidase reaction selectively. The existence of V-polyoxometalate accelerates the autoxidation rate of I as demonstrated by the rate measurements. ESR and UV-VIS spectra showed that the Lewis base destroyed the dioxygenation reaction catalyst as formed and restrained its regeneration by suppressing the coordination of catechol radical to vanadium. The by-products of the dioxygenation and oxidation reactions are H2O and H2O2, respectively.

[1] Bader, H., Sturzenegger, V., & Hoigné, J. (1988). Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Research, 22, 1109–1115. DOI: 10.1016/0043-1354(88)90005-x. http://dx.doi.org/10.1016/0043-1354(88)90005-X10.1016/0043-1354(88)90005-XSearch in Google Scholar

[2] Branca, M., Micera, G., Dessi, A., Sanna, D., & Raymond, K. N. (1990). Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. Inorganic Chemistry, 29, 1586–1589. DOI: 10.1021/ic00333a030. http://dx.doi.org/10.1021/ic00333a03010.1021/ic00333a030Search in Google Scholar

[3] Cowan, J. A. (1998). Metal activation of enzymes in nucleic acid biochemistry. Chemical Reviews, 98, 1067–1088. DOI: 10.1021/cr960436q. http://dx.doi.org/10.1021/cr960436q10.1021/cr960436qSearch in Google Scholar PubMed

[4] Cox, D. D., & Que, L., Jr. (1988). Functional models for catechol 1,2-dioxygenase. The role of the iron(III) center. Journal of the American Chemical Society, 110, 8085–8092. DOI:10.1021/ja00232a021. 10.1021/ja00232a021Search in Google Scholar

[5] Day, V. W., Klemperer, W. G., & Maltbie, D. J. (1987). Where are the protons in H3V10O 283−? Journal of the American Chemical Society, 109, 2991–3002. DOI: 10.1021/ja00244a022. http://dx.doi.org/10.1021/ja00244a02210.1021/ja00244a022Search in Google Scholar

[6] Gao, X., & Xu, J. (2006). The oxygen activated by the active vanadium species for the selective oxidation of benzene to phenol. Catalysis Letters, 111, 203–205. DOI:10.1007/s10562-006-0148-1. http://dx.doi.org/10.1007/s10562-006-0148-110.1007/s10562-006-0148-1Search in Google Scholar

[7] Groves, J. T., Bonchio, M., Carofiglio, T., & Shalyaev, K. (1996). Rapid catalytic oxygenation of hydrocarbons by ruthenium pentafluorophenylporphyrin complexes: Evidence for the involvement of a Ru(III) intermediate. Journal of the American Chemical Society, 118, 8961–8962. DOI:10.1021/ja9542092. http://dx.doi.org/10.1021/ja954209210.1021/ja9542092Search in Google Scholar

[8] Hagen, C. M., Vieille-Petit, L., Laurenczy, G., Süss-Fink, G., & Finke, R. G. (2005). Supramolecular triruthenium clusterbased benzene hydrogenation catalysis: Fact or fiction? Organometallics, 24, 1819–1831. DOI: 10.1021/om048976y. http://dx.doi.org/10.1021/om048976y10.1021/om048976ySearch in Google Scholar

[9] Henry, M. (2002). Quantitative modelization of hydrogenbonding in polyoxometalate chemisty. Journal of Cluster Science, 13, 437–458. DOI:10.1023/a:1020559217894. http://dx.doi.org/10.1023/A:102055921789410.1023/A:1020559217894Search in Google Scholar

[10] Jovanovic, S. V., Kónya, K., & Scaiano, J. C. (1995). Redox reactions of 3,5-di-tert-butyl-1,2-benzoquinone. Implications for reversal of paper yellowing. Canadian Journal of Chemistry, 73, 1803–1810. DOI: 10.1139/v95-222. 10.1139/v95-222Search in Google Scholar

[11] Koval, I. A., Gamez, P., Belle, C., Selmeczi, K., & Reedijk, J. (2006). Synthetic models of the active site of catechol oxidase: mechanistic studies. Chemical Society Reviews, 35, 814–840. DOI: 10.1039/b516250p. http://dx.doi.org/10.1039/b516250p10.1039/b516250pSearch in Google Scholar PubMed

[12] Lin, G., Reid, G., & Bugg, T. D. H. (2001). Extradiol oxidative cleavage of catechols by ferrous and ferric complexes of 1,4,7-triazacyclononane: Insight into the mechanism of the extradiol catechol dioxygenases. Journal of the American Chemical Society, 123, 5030–5039. DOI: 10.1021/ja004280u. http://dx.doi.org/10.1021/ja004280u10.1021/ja004280uSearch in Google Scholar PubMed

[13] May, Z., Simándi, L. I., & Németh, Z. (2006). A novel ironenhanced pathway for base-catalyzed catechol oxidation by dioxygen. Reaction Kinetics and Catalysis Letters, 89, 349–358. DOI: 10.1007/s11144-006-0147-7. http://dx.doi.org/10.1007/s11144-006-0147-710.1007/s11144-006-0147-7Search in Google Scholar

[14] Morris, A. M., Pierpont, C. G., & Finke, R. G. (2009). Dioxygenase catalysis by d0 metal-catacholate complexes containing vanadium and molybdenum with H2(3,5-DTBC) and H2(3,6-DTBC) substrates. Journal of Molecular Catalysis A: Chemical, 309, 137–145. DOI:10.1016/j.molcata.2009.05.008. http://dx.doi.org/10.1016/j.molcata.2009.05.00810.1016/j.molcata.2009.05.008Search in Google Scholar

[15] Ragsdale, S. W., & Kumar, M. (1996). Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chemical Reviews, 96, 2515–2540. DOI: 10.1021/cr950058+. http://dx.doi.org/10.1021/cr950058+10.1021/cr950058+Search in Google Scholar PubMed

[16] Sigel, R. K. O., & Pyle, A. M. (2007). Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chemical Reviews, 107, 97–113. DOI:10.1021/cr0502605. http://dx.doi.org/10.1021/cr050260510.1021/cr0502605Search in Google Scholar PubMed

[17] Szigyártó, I. C., Simándi, L. I., Párkányi, L., Korecz, L., & Schlosser, G. (2006). Biomimetic oxidation of 3,5-di-tertbutylcatechol by dioxygen via Mn-enhanced base catalysis. Inorganic Chemistry, 45, 7480–7487. DOI: 10.1021/ic060618v. http://dx.doi.org/10.1021/ic060618v10.1021/ic060618vSearch in Google Scholar PubMed

[18] Weiner, H., & Finke, R. G. (1999). An all-inorganic, polyoxometalate-based catechol dioxygenase that exhibits >100000 catalytic turnovers. Journal of the American Chemical Society, 121, 9831–9842. DOI: 10.1021/ja991503b. http://dx.doi.org/10.1021/ja991503b10.1021/ja991503bSearch in Google Scholar

[19] Yin, C. X., & Finke, R. G. (2005). Vanadium-based, extended catalytic lifetime catechol dioxygenases: Evidence for a common catalyst. Journal of the American Chemical Society, 127, 9003–9013. DOI: 10.1021/ja051594e. http://dx.doi.org/10.1021/ja051594e10.1021/ja051594eSearch in Google Scholar PubMed

[20] Yin, C. X., Sasaki, Y., & Finke, R. G. (2005). Autoxidation-product-initiated dioxygenases: vanadium-based, record catalytic lifetime catechol dioxygenase catalysis. Inorganic Chemistry, 44, 8521–8530. DOI: 10.1021/ic050717t. http://dx.doi.org/10.1021/ic050717t10.1021/ic050717tSearch in Google Scholar PubMed

Published Online: 2012-1-8
Published in Print: 2012-3-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0119-x/html?lang=en
Scroll to top button