Home Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality
Article
Licensed
Unlicensed Requires Authentication

Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality

  • Mónica Chávez-González EMAIL logo , Juan Contreras-Esquivel , Lilia Prado-Barragán , Raúl Rodríguez , Antonio Aguilera-Carbo , Luis Rodríguez and Cristóbal Aguilar
Published/Copyright: January 8, 2012
Become an author with De Gruyter Brill

Abstract

Tannic acid is commonly employed as the main component in culture media for the selection of tannase-producing strains. In biotechnological processes it is the favorite substrate used to induce the tannase enzyme in both solid and submerged culture for microbial and/or enzymatic production of gallic acid. However, the results found in literature are inconsistent notwithstanding the strict control of all parameters that rule the bioprocesses. The present work, for the first time, reveals the importance of differences in the quality and chemical profile of tannic acid from different suppliers and their influence on the fungal and enzymatic hydrolytic pattern obtained when it is used as a substrate. A degree of hydrolysis between 64.7 % and 100 % has been determined in different tannic acid samples. The specific growth rate of 0.712 h−1, 0.792 h−1, 0.477 h−1, 0.536 h−1 for Jalmek®, Faga Lab®, Division Food®, and Riedel de Häen®, respectively, was obtained at the concentration of 80 g L−1 of each of the tannic acids.

[1] Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001). Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochemistry, 36, 565–570. DOI: 10.1016/s0032-9592(00)00251-x. http://dx.doi.org/10.1016/S0032-9592(00)00251-X10.1016/S0032-9592(00)00251-XSearch in Google Scholar

[2] Aguilar, C. N., & Gutiérrez-Sánchez, G. (2001). Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International, 7, 373–382. DOI: 10.1106/69m3-b30k-cf7q-rj5g. 10.1106/69M3-B30K-CF7Q-RJ5GSearch in Google Scholar

[3] Aguilera-Carbo, A., Augur, C., Prado-Barragan, L. A., Favela-Torres, E., & Aguilar, C. N. (2008). Microbial production of ellagic acid and biodegradation of ellagitannins. Applied Microbiology and Biotechnology, 78, 189–199. DOI: 10.1007/s00253-007-1276-2. http://dx.doi.org/10.1007/s00253-007-1276-210.1007/s00253-007-1276-2Search in Google Scholar

[4] Banerjee, D., Mahapatra, S., & Pati, B. R. (2007). Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Research Journal of Microbiology, 2, 462–468. DOI: 10.3923/jm.2007.462.468. http://dx.doi.org/10.3923/jm.2007.462.46810.3923/jm.2007.462.468Search in Google Scholar

[5] Banerjee, D., & Pati, B. R. (2007). Optimization of tannase production by Aureobasidium pullulans DBS66. Journal of Microbiology and Biotechnology, 17, 985–992. Search in Google Scholar

[6] Belmares, R., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Ramírez Coronel, A., & Aguilar, C. N. (2004). Microbial production of tannase: an enzyme with potential use in food industry. LWT-Food Science and Technology, 37, 857–864. DOI: 10.1016/j.lwt.2004.04.002. http://dx.doi.org/10.1016/j.lwt.2004.04.00210.1016/j.lwt.2004.04.002Search in Google Scholar

[7] Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins — A current perspective. Biodegradation, 9, 343–357. DOI: 10.1023/a:1008397506963. http://dx.doi.org/10.1023/A:100839750696310.1023/A:1008397506963Search in Google Scholar

[8] Bollen, W. B., & Lu, K. C. (1969). Douglas-fir bark tannin decomposition in two forest soils. Portland, OR, USA: Pacific Northwest Forest and Range Experiment station. Search in Google Scholar

[9] Clarke, I. D., Rogers, J. S., Sievers, A. F., & Hopp, H. (1949). Tannin content and other characteristics of native sumac in relation to its value as a commercial source of tannin. Technical Bulletin of the United States Department of Agriculture, 986, 1–76. Search in Google Scholar

[10] Cruz-Hernández, M., Contreras, J. C., Lima, N., Teixeira, J., & Aguilar, C. (2009). Production of Aspergillus niger GH1 tannase using solid-state fermentation. Journal of Pure and Applied Microbiology, 3, 21–26. Search in Google Scholar

[11] Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2006). Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6. Polish Journal of Microbiology, 55, 297–301. Search in Google Scholar

[12] Goldstein, J. L., & Swain, T. (1965). The inhibition of enzymes by tannins. Phytochemistry, 4, 185–192. DOI: 10.1016/s0031- 9422(00)86162-2. http://dx.doi.org/10.1016/S0031-9422(00)86162-210.1016/S0031-9422(00)86162-2Search in Google Scholar

[13] Haslam, E. (1989). Plant polyphenols: vegetable tannins revisited. New York, NY, USA: Cambridge University Press. Search in Google Scholar

[14] Khanbabaee, K., & van Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports, 18, 641–649. DOI: 10.1039/b101061l. http://dx.doi.org/10.1039/b101061l10.1039/b101061lSearch in Google Scholar

[15] Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Microbiology, 44, 215–260. DOI: 10.1016/s0065-2164(08)70463-5. http://dx.doi.org/10.1016/S0065-2164(08)70463-510.1016/S0065-2164(08)70463-5Search in Google Scholar

[16] Li, M., Yao, K., He, Q., & Jia, D. (2006). Biodegradation of gallotannins and ellagitannins. Journal Basic Microbiology, 46, 68–84. DOI: 10.1002/jobm.200510600. http://dx.doi.org/10.1002/jobm.20051060010.1002/jobm.200510600Search in Google Scholar PubMed

[17] Li, W. W., Li, X. D., & Zeng, K. M. (2009). Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochemical Engineering Journal, 43, 142–148. DOI: 10.1016/j.bej.2008.09.010. http://dx.doi.org/10.1016/j.bej.2008.09.01010.1016/j.bej.2008.09.010Search in Google Scholar

[18] Mata-Gómez, M., Rodríguez, L. V., Ramos, E. L., Renovato, J., Cruz-Hernández, M. A., Rodríguez, R., Contreras, J., & Aguilar, C. N. (2009). A novel tannase from the xerophilic fungus Aspergillus niger GH1. Journal of Microbiology and Biotechnology, 19, 987–996. DOI: 10.4014/jmb.1009.09041. http://dx.doi.org/10.4014/jmb.0811.61510.4014/jmb.1009.09041Search in Google Scholar

[19] Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91, 3–20. DOI: 10.1016/s0377-8401(01)00227-9. http://dx.doi.org/10.1016/S0377-8401(01)00227-910.1016/S0377-8401(01)00227-9Search in Google Scholar

[20] Salminen, J. P., Ossipov, V., Loponen, J., Haukioja, E., & Pihlaja, K. (1999). Characterization of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography—mass spectrometry. Journal of Chromatography A, 864, 283–291. DOI: 10.1016/s0021-9673(99)01036-5. http://dx.doi.org/10.1016/S0021-9673(99)01036-510.1016/S0021-9673(99)01036-5Search in Google Scholar

[21] Schofield, P., Mbugua, D. M., & Pell, A. N. (2001). Analysis of condensed tannins: a review. Animal Feed Science and Technology, 91, 21–40. DOI: 10.1016/s0377-8401(01)00228-0. http://dx.doi.org/10.1016/S0377-8401(01)00228-010.1016/S0377-8401(01)00228-0Search in Google Scholar

[22] Sharma, S., Bhat, T. K., & Dawra, R. K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 279, 85–89. DOI: 10.1006/abio.1999.4405. http://dx.doi.org/10.1006/abio.1999.440510.1006/abio.1999.4405Search in Google Scholar PubMed

[23] Swain, T., & Bate-Smith, E. C. (1962). Flavonoid compounds. In H. S. Mason, & A. M. Florkin (Eds.), Comparative biochemistry (pp. 755–809). New York, NY, USA: Academic Press. Search in Google Scholar

[24] Van Diepeningen, A. D., Debets, A. J. M., Varga, J., Van Der Gaag, M., Swart, K., & Hoekstra, R. F. (2004). Efficient degradation of tannic acid by black Aspergillus species. Mycological Reserch, 108, 919–925. DOI: 10.1017/s0953756204000747. http://dx.doi.org/10.1017/S095375620400074710.1017/S0953756204000747Search in Google Scholar

Published Online: 2012-1-8
Published in Print: 2012-3-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0112-4/html?lang=en
Scroll to top button