Home Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
Article
Licensed
Unlicensed Requires Authentication

Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi

  • Kobkul Laoteng EMAIL logo , Milan Čertík and Supapon Cheevadhanark
Published/Copyright: January 26, 2011
Become an author with De Gruyter Brill

Abstract

Polyunsaturated fatty acids (PUFAs) are functional lipids that have been widely incorporated into several industrial sectors. Apart from animal- and plant-derived origins, oleaginous fungi belonging to Mucorales have been identified as promising alternatives for production of n-3 and n-6 PUFAs. It was found, in Mucorales fungi, that ATP:citrate lyase, acetyl-CoA carboxylase and malic enzyme trigger lipid overproduction, and biosynthesis of PUFA requires membrane-bound desaturases with fatty acyl substrate specificities. Accumulation of PUFAs in the cells is associated not only with the desaturation system, but it is also tightly bound with acyltransferases that facilitate the distribution of newly synthesized PUFA to individual lipid structures. Several physical parameters, such as temperature, aeration, and nutrient regimes, greatly affect either the lipid content or fatty acid composition among different Mucorales species. Conclusive evidence showed that the PUFA production yield of the fungi depends on the environmental control of “oleaginous” enzymes, and on the transcriptional expression of the desaturase genes. These valuable studies provide perspectives with biological rationale for microbial production of economically important lipids.

[1] Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.-L., Molina-Jouve, C., & Nicaud, J.-M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48, 375–387. DOI: 10.1016/j.plipres.2009.08.005. http://dx.doi.org/10.1016/j.plipres.2009.08.00510.1016/j.plipres.2009.08.005Search in Google Scholar

[2] Bloomfield, D. K.,& Bloch, K. (1960). The formation of Δ9-unsaturated fatty acids. Journal of Biological Chemistry, 235, 337–345. 10.1016/S0021-9258(18)69525-0Search in Google Scholar

[3] <Certík, M., Baltészová, L.,& <Sajbidor, J. (1997). Lipid formation and γ-linolenic acid production by Mucorales fungi grown on sunflower oil. Letters in Applied Microbiology, 25, 101–105. DOI: 10.1046/j.1472-765X.1997.00173.x. http://dx.doi.org/10.1046/j.1472-765X.1997.00173.x10.1046/j.1472-765X.1997.00173.xSearch in Google Scholar

[4] Certik, M., Megova, J.,& Horenitzky, R. (1999). Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. The Journal of General Applied Microbiology, 45, 289–293. DOI: 10.2323/jgam.45.289. http://dx.doi.org/10.2323/jgam.45.28910.2323/jgam.45.289Search in Google Scholar

[5] Choi, S. Y., Ryu, D. D. Y.,& Rhee, J. S. (1982). Production of microbial lipid: Effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnology and Bioengineering, 24, 1165–1172. DOI: 10.1002/bit.260240513. http://dx.doi.org/10.1002/bit.26024051310.1002/bit.260240513Search in Google Scholar

[6] Dyal, S. D., Bouzidi, L.,& Narine, S. S. (2005). Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Research International, 38, 815–829. DOI: 10.1016/j.foodres.2005.04.002. http://dx.doi.org/10.1016/j.foodres.2005.04.00210.1016/j.foodres.2005.04.002Search in Google Scholar

[7] Fakas, S., Galiotou-Panayotou, M., Papanikolaou, S., Komaitis, M.,& Aggelis, G. (2007). Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme and Microbial Technology, 40, 1321–1327. DOI: 10.1016/j.enzmictec.2006.10.005. http://dx.doi.org/10.1016/j.enzmictec.2006.10.00510.1016/j.enzmictec.2006.10.005Search in Google Scholar

[8] Fakas, S., Papanikolaou, S., Galiotou-Panayotou, M., Komaitis, M.,& Aggelis, G. (2006). Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Applied Microbiology and Biotechnology, 73, 676–683. DOI: 10.1007/s00253-006-0506-3. http://dx.doi.org/10.1007/s00253-006-0506-310.1007/s00253-006-0506-3Search in Google Scholar

[9] Hansson, L.,& Dostálek, M. (1988). Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Applied Microbiology and Biotechnology, 28, 240–246. DOI: 10.1007/BF00250448. http://dx.doi.org/10.1007/BF0025044810.1007/BF00250448Search in Google Scholar

[10] Higashiyama, K., Murakami, K., Tsujimura, H., Matsumoto, N.,& Fujikawa, S. (1999). Effect of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S–4. Biotechnology and Bioengineering, 63, 442–448. DOI: 10.1002/(SICI)1097-0290(19990520)63:4<442::AIDBIT7>3.0.CO;2–9. http://dx.doi.org/10.1002/(SICI)1097-0290(19990520)63:4<442::AID-BIT7>3.0.CO;2-910.1002/(SICI)1097-0290(19990520)63:4<442::AID-BIT7>3.0.CO;2-9Search in Google Scholar

[11] Jeennor, S., Laoteng, K., Tanticharoen, M., & Cheevadhanarak, S. (2006). Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiology Letters, 259, 60–66. DOI: 10.1111/j.1574-6968.2006.00242.x. http://dx.doi.org/10.1111/j.1574-6968.2006.00242.x10.1111/j.1574-6968.2006.00242.xSearch in Google Scholar

[12] Jones, R. P. (1989). Biological principles for the effects of ethanol. Enzyme Microbiology and Technology, 11, 130–153. DOI: 10.1016/0141-0229(89)90073-2. http://dx.doi.org/10.1016/0141-0229(89)90073-210.1016/0141-0229(89)90073-2Search in Google Scholar

[13] Kamisaka, Y., Mishra, S.,& Nakahara, T. (1997). Purification and characterization of diacylglycerol acyltransferase from the lipid body fraction of an oleaginous fungus. Journal of Biochemistry, 121, 1107–1114. 10.1093/oxfordjournals.jbchem.a021702Search in Google Scholar

[14] Kamisaka, Y., Yokochi, T., Nakahara, T.,& Suzuki, O. (1990). Incorporation of linoleic acid and its conversion to γ-linolenic acid in fungi. Lipids, 25, 54–60. DOI: 10.1007/BF02562428. http://dx.doi.org/10.1007/BF0256242810.1007/BF02562428Search in Google Scholar

[15] Kendrick, A.,& Ratledge, C. (1996). Cessation of polyunsaturated fatty acid formation in four selected filamentous fungi when grown on plant oils. Journal of the American Oil Chemists’ Society, 73, 431–435. DOI: 10.1007/BF02523914. http://dx.doi.org/10.1007/BF0252391410.1007/BF02523914Search in Google Scholar

[16] Khoomrung, S., Laoteng, K., Jitsue, S.,& Cheevadhanarak, S. (2008). Significance of fatty acid supplementation on profiles of cell growth, fatty acid, and gene expression of three desaturases in Mucor rouxii. Applied Microbiology and Biotechnology, 80, 499–506. DOI: 10.1007/s00253-008-1569-0. http://dx.doi.org/10.1007/s00253-008-1569-010.1007/s00253-008-1569-0Search in Google Scholar

[17] Koike, Y., Cai, H. J., Higashiyama, K., Fujikawa, S.,& Park, E. Y. (2001). Effect of consumed carbon to nitrogen ratio of mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. Journal of Bioscience and Bioengineering, 91, 382–389. DOI: 10.1016/S1389-1723(01)80156-0. http://dx.doi.org/10.1263/jbb.91.38210.1016/S1389-1723(01)80156-0Search in Google Scholar

[18] Laoteng, K., Anjard, C., Rachadawong, S., Tanticharoen, M., Maresca, B., & Cheevadhanarak, S. (1999). Mucor rouxii Δ9-desaturase gene is transcriptionally regulated during cell growth and by low temperature. Molecular Cell Biology Research Communications, 1, 36–43. DOI: 10.1006/mcbr.1999.0107. http://dx.doi.org/10.1006/mcbr.1999.010710.1006/mcbr.1999.0107Search in Google Scholar PubMed

[19] Laoteng, K., & Certik, M. (2010). Biotechnological production and application of high-value microbial oils. In J. Krause, & O. Fleischer (Eds.), Industrial fermentation: Food processes, nutrient sources and production strategies (Food Science and Technology (pp. 187–215). Hauppauge, NY, USA: Nova Science Publisher, Inc. Search in Google Scholar

[20] Laoteng, K., Jitsue, S., Dandusitapunth, Y., & Cheevadhanarak, S. (2008). Ethanol-induced changes in expression profiles of cell growth, fatty acid and desaturase genes of Mucor rouxii. Fungal Genetics and Biology, 45, 61–67. DOI: 10.1016/j.fgb.2007.04.006. http://dx.doi.org/10.1016/j.fgb.2007.04.00610.1016/j.fgb.2007.04.006Search in Google Scholar PubMed

[21] Laoteng, K., Ruenwai, R., Tanticharoen, M., & Cheevadhanarak, S. (2005). Genetic modification of essential fatty acids biosythesis in Hansenula polymorpha. FEMS Microbiology Letters, 245, 169–178. DOI: 10.1016/j.femsle.2005.03.006. http://dx.doi.org/10.1016/j.femsle.2005.03.00610.1016/j.femsle.2005.03.006Search in Google Scholar PubMed

[22] Lardizabal, K. D., Mai, J. T., Wagner, N. W., Wyrick, A., Voelker, T., & Hawkins, D. J. (2001). DGAT2 is a new diacylglycerol acyltransferase gene family: Purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. The Journal of Biological Chemistry, 276, 38862–38869. DOI: 10.1074/jbc.M106168200. http://dx.doi.org/10.1074/jbc.M10616820010.1074/jbc.M106168200Search in Google Scholar

[23] Lopes da Silva, T., Pinheiro, H. M., & Roseiro, J. C. (2003). Stress-induced morphological and physiological changes in γ-linolenic acid production by Mucor fragilis in batch and continuous cultures. Enzyme and Microbial Technology, 32, 880–888. DOI: 10.1016/S0141-0229(03)00061-9. http://dx.doi.org/10.1016/S0141-0229(03)00061-910.1016/S0141-0229(03)00061-9Search in Google Scholar

[24] Michinaka, Y., Aki, T., Shimauchi, T., Nakajima, T., Kawamoto, S., Shigeta, S., Suzuki, O., & Ono, K. (2003). Differential response to low temperature of two Δ6 fatty acid desaturases from Mucor circinelloides. Applied Microbiology and Biotechnology, 62, 362–368. DOI: 10.1007/s00253-003-1326-3. http://dx.doi.org/10.1007/s00253-003-1326-310.1007/s00253-003-1326-3Search in Google Scholar

[25] Mishra, P., & Kaur, S. (1991). Lipids as modulators of ethanol tolerance in yeast. Applied Microbiology and Biotechnology, 34, 697–702. DOI: 10.1007/BF00169336. http://dx.doi.org/10.1007/BF0016933610.1007/BF00169336Search in Google Scholar

[26] Mishra, S., Dwivedi, S. P., Dwivedi, N., Kumar, A., Rawat, A., & Kamisaka, Y. (2009). A molecular model for diacylglycerol acyltransferase from Mortierella ramanniana var. angulispora. Bioinformation, 3, 394–398. 10.6026/97320630003394Search in Google Scholar

[27] Muhid, F., Nawi, W. N. N. W., Kader, A. J. A., Yusoff, W. M. W., & Hamid, A. A. (2008). Effects of metal ion concentrations on lipid and gamma linolenic acid production by Cunninghamella sp. 2A1. OnLine Journal of Biological Sciences, 8, 62–67. http://dx.doi.org/10.3844/ojbsci.2008.62.6710.3844/ojbsci.2008.62.67Search in Google Scholar

[28] Na-Ranong, S., Laoteng, K., Kittakoop, P., Tanticharoen, M., & Cheevadhanarak, S. (2005). Substrate specificity and preference of Δ6-desaturase of Mucor rouxii. FEBS Letters, 579, 2744–2748. DOI: 10.1016/j.febslet.2005.04.010. http://dx.doi.org/10.1016/j.febslet.2005.04.01010.1016/j.febslet.2005.04.010Search in Google Scholar

[29] Napier, J. A., Sayanova, O., Stobart, A. K., & Shewry, P. R. (1997). A new class of cytochrome b5 fusion proteins. The Biochemical Journal, 328, 717–718. 10.1042/bj3280717uSearch in Google Scholar

[30] Passorn, S., Laoteng, K., Rachadawong, S., Tanticharoen, M., & Cheevadhanarak, S. (1999). Heterologous expression of Mucor rouxii Δ12-desaturase gene in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 263, 47–51. DOI: 10.1006/bbrc.1999.1258. http://dx.doi.org/10.1006/bbrc.1999.125810.1006/bbrc.1999.1258Search in Google Scholar

[31] Pillai, M. G., Certik, M., Nakahara, T., & Kamisaka, Y. (1998). Characterization of triacylglycerol biosynthesis in subcellular fractions of an oleaginous fungus, Mortierella ramanniana var. angulispora. Biochimica et Biophysica Acta, 1393, 128–136. DOI: 10.1016/S0005-2760(98)00069-1. 10.1016/S0005-2760(98)00069-1Search in Google Scholar

[32] Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86, 807–815. DOI: 10.1016/j.biochi.2004.09.017. http://dx.doi.org/10.1016/j.biochi.2004.09.01710.1016/j.biochi.2004.09.017Search in Google Scholar PubMed

[33] Ratledge, C. (2002). Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transactions, 30, 1047–1050. http://dx.doi.org/10.1042/BST030104710.1042/bst0301047Search in Google Scholar PubMed

[34] Ruenwai, R., Cheevadhanarak, S., & Laoteng, K. (2009). Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Molecular Biotechnology, 42, 327–332. DOI: 10.1007/s12033-009-9155-y. http://dx.doi.org/10.1007/s12033-009-9155-y10.1007/s12033-009-9155-ySearch in Google Scholar PubMed

[35] Ruenwai, R., Cheevadhanarak, S., Rachdawong, S., Tanticharoen, M., & Laoteng, K. (2010). Oxygen-induced expression of Δ6-, Δ9- and Δ12-desaturase genes modulates fatty acid composition in Mucor rouxii. Applied Microbiology and Biotechnology, 86, 327–334. DOI: 10.1007/s00253-009-2338-4. http://dx.doi.org/10.1007/s00253-009-2338-410.1007/s00253-009-2338-4Search in Google Scholar PubMed

[36] <Sajbidor, J., Koželouhov<Certík, M. (1992). Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp. Folia Microbiologica, 37, 404–406. DOI: 10.1007/BF02899897. http://dx.doi.org/10.1007/BF0289989710.1007/BF02899897Search in Google Scholar

[37] Serrano, I., Lopes da Silva, T., & Roseiro, J. C. (2001). Ethanolinduced dimorphism and lipid composition changes in Mucor fragilis CCMI 142. Letters in Applied Microbiology, 33, 89–93. DOI: 10.1046/j.1472-765X.2001.00958.x. http://dx.doi.org/10.1046/j.1472-765X.2001.00958.x10.1046/j.1472-765X.2001.00958.xSearch in Google Scholar PubMed

[38] Sokolov, D. M., Sharyshev, A. A., & Finogenova, T. V. (1995). Subcellular location of enzymes mediating glucose metabolism in various groups of yeasts. Biochemistry (Moscow), 60, 1325–1331. Search in Google Scholar

[39] Song, Y., Wynn, J. P., Li, Y., Grantham, D., & Ratledge, C. (2001). A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology, 147, 1507–1515. 10.1099/00221287-147-6-1507Search in Google Scholar PubMed

[40] Wan, X., Zhang, Y., Wang, P., Huang, F., Chen, H., & Jiang, M. (2009). Production of gamma-linolenic acid in Pichia pastoris by expression of a delta-6 desaturase gene from Cunninghamella echinulata. Journal of Microbiology and Biotechnology, 19, 1098–1102. DOI: 10.4014/jmb.0902.071. http://dx.doi.org/10.4014/jmb.0902.07110.4014/jmb.0902.071Search in Google Scholar

[41] Wang, D., Li, M., Wei, D., Cai, Y., Zhang, Y., & Xing, L. (2007). Identification and functional characterization of the delta 6-fatty acid desaturase gene from Thamnidium elegans. The Journal of Eukaryotic Microbiology, 54, 110–117. DOI: 10.1111/j.1550-7408.2006.00136.x. http://dx.doi.org/10.1111/j.1550-7408.2006.00136.x10.1111/j.1550-7408.2006.00136.xSearch in Google Scholar PubMed

[42] Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry, 40, 3627–3652. DOI: 10.1016/j.procbio.2005.02.020. http://dx.doi.org/10.1016/j.procbio.2005.02.02010.1016/j.procbio.2005.02.020Search in Google Scholar

[43] Wynn, J. P., Hamid, A. A., Li, Y., & Ratledge, C. (2001). Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology, 147, 2857–2864. 10.1099/00221287-147-10-2857Search in Google Scholar PubMed

[44] Wynn, J. P., & Ratledge, C. (2000). Evidence that the ratelimiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology, 146, 2325–2331. 10.1099/00221287-146-9-2325Search in Google Scholar PubMed

[45] Wynn, J. P., & Ratledge, C. (1997). Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology, 143, 253–257. DOI: 10.1099/00221287-143-1-253. http://dx.doi.org/10.1099/00221287-143-1-25310.1099/00221287-143-1-253Search in Google Scholar PubMed

[46] Zhang, Y., Adams, I. P., & Ratledge, C. (2007). Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circienelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology, 153, 2013–2025. DOI: 10.1099/mic.0.2006/002683-0. http://dx.doi.org/10.1099/mic.0.2006/002683-010.1099/mic.0.2006/002683-0Search in Google Scholar PubMed

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
  2. Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
  3. New SPME fibre for analysis of mequinol emitted from DVDs
  4. Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
  5. Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
  6. Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
  7. Kinetic study of pyrolysis of waste water treatment plant sludge
  8. Transport phenomena in an agitated vessel with an eccentrically located impeller
  9. Membrane extraction of 1-phenylethanol from fermentation solution
  10. Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
  11. Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
  12. The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
  13. Effectiveness of nitric oxide ozonation
  14. Modelling of nanocrystalline iron nitriding process — influence of specific surface area
  15. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
  16. Carnauba wax microparticles produced by melt dispersion technique
  17. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
  18. Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
  19. Continuous dialysis of sulphuric acid in the presence of zinc sulphate
  20. Differences in affinity of arylstilbazolium derivatives to tetraplex structures
  21. Fast ferritin immunoassay on PDMS microchips
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0097-4/pdf
Scroll to top button