Home Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
Article
Licensed
Unlicensed Requires Authentication

Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation

  • Anita Rywińska EMAIL logo and Waldemar Rymowicz
Published/Copyright: January 26, 2011
Become an author with De Gruyter Brill

Abstract

The kinetics of continuous citric acid (CA) fermentation, using two acetate-negative mutants of Yarrowia lipolytica (Wratislavia AWG7 and Wratislavia 1.31) with long-term cell recycle, were investigated at a dilution rate (D) of 0.011 h−1. The capacity of the mutants to produce CA from raw glycerol under steady state conditions was compared. The process involving the Wratislavia AWG7 strain showed that this strain was a better producer of CA than the Wratislavia 1.31 strain in this regime. In steady state, the concentration of CA in the effluent was constant and amounted to 116 g dm−3. This corresponded to a volumetric CA production rate of 1.3 g dm−3 h−1. A stable high-level production of CA was maintained for over 400 h of operation. The Wratislavia AWG7 strain employed remained highly stable throughout the experiment and demonstrated good viability, high genetic and phenotypic stability over the long-term continuous fermentation process.

[1] Anastassiadis, S., Morgunov, I. G., Kamzolova, S. V., & Finogenova, T. V. (2008). Citric acid production patent review. Recent Patents on Biotechnology, 2, 107–123. DOI: 10.2174/187220808784619757. http://dx.doi.org/10.2174/18722080878461975710.2174/187220808784619757Search in Google Scholar

[2] Anastassiadis, S., Wandrey, C., & Rhem, H.-J. (2005). Continuous citric acid fermentation by Candida oleophila under nitrogen limitation at constant C/N ratio. World Journal of Microbiology & Biotechnology, 21, 695–705. DOI: 10.1007/s11274-004-3850-4. http://dx.doi.org/10.1007/s11274-004-3850-410.1007/s11274-004-3850-4Search in Google Scholar

[3] Arzumanov, T. E., Shishkanova, N. V., & Finogenova, T. V. (2000). Biosynthesis of citric acid by Yarrowia lipolytica repeat-batch culture on ethanol. Applied Microbiology and Biotechnolology, 53, 525–529. DOI: 10.1007/s002530051651. http://dx.doi.org/10.1007/s00253005165110.1007/s002530051651Search in Google Scholar

[4] Brown, B. D., Hsu, K. H., Hammond, E. G., & Glatz, B. A. (1989). A relationship between growth and lipid accumulation in Candida curvata D. Journal of Fermentation and Bioengineering, 68, 344–352. DOI: 10.1016/0922-338X(89)90010-X. http://dx.doi.org/10.1016/0922-338X(89)90010-X10.1016/0922-338X(89)90010-XSearch in Google Scholar

[5] Bubbico, R., Lo Presti, S., Bravi, M., Moresi, M., & Spinosi, M. (1996). Repeated batch citrate production by Yarrowia lipolytica using yeast recycling by cross-flow microfiltration. Agro Food Industry Hi-Tech, 7, 35–38. Search in Google Scholar

[6] Charcosset, C. (2006). Membrane processes in biotechnology: An overview. Biotechnology Advances, 24, 482–492. DOI: 10.1016/j.biotechadv.2006.03.002. http://dx.doi.org/10.1016/j.biotechadv.2006.03.00210.1016/j.biotechadv.2006.03.002Search in Google Scholar

[7] Choi, J.-H., Moon, K.-H., Ryu, Y.-W., & Seo, J.-H. (2000). Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnology Letters, 22, 1625–1628. DOI: 10.1023/A:1005693427389. http://dx.doi.org/10.1023/A:100569342738910.1023/A:1005693427389Search in Google Scholar

[8] Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-parrafins. Journal of Biotechnology, 110, 73–84. DOI: 10.1016/j.jbiotec.2004.01.007. http://dx.doi.org/10.1016/j.jbiotec.2004.01.00710.1016/j.jbiotec.2004.01.007Search in Google Scholar

[9] Dhillon, G. S., Brar, S. K., Verma, M., & Tyagi, R. D. (2010). Recent advances in citric acid bio-production and recovery. Food and Bioprocess Technology, Online First, 13 July 2010. DOI: 10.1007/s11947-010-0399-0. 10.1007/s11947-010-0399-0Search in Google Scholar

[10] Enzminger, J. D., & Asenjo, J. A. (1986). Use of cell recycle in the aerobic fermentative production of citric acid by yeast. Biotechnology Letters, 8, 7–12. DOI: 10.1007/BF01044392. http://dx.doi.org/10.1007/BF0104439210.1007/BF01044392Search in Google Scholar

[11] Escobar, J. M, Rane, K. D., & Cheryan, M. (2001). Ethanol production in a membrane bioreactor. Applied Biochemistry and Biotechnology, 91–93, 283–296. DOI: 10.1385/ABAB:91-93:1-9:283. http://dx.doi.org/10.1385/ABAB:91-93:1-9:28310.1385/ABAB:91-93:1-9:283Search in Google Scholar

[12] Evans, C. T., & Ratledge, C. (1983). Biochemical activities during lipid accumulation in Candida curvata. Lipids, 18, 630–635. DOI: 10.1007/BF02534674. http://dx.doi.org/10.1007/BF0253467410.1007/BF02534674Search in Google Scholar

[13] Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: A review of prospects. Applied Biochemistry and Microbiology, 41, 418–425. DOI: 10.1007/s10438-005-0076-7. http://dx.doi.org/10.1007/s10438-005-0076-710.1007/s10438-005-0076-7Search in Google Scholar

[14] Goldberg, D. M, & Ellis, G. (1983). Isocitrate dehydrogenase. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (Vol. 3, pp. 183–190). Weinheim, Germany: Verlag Chemie. Search in Google Scholar

[15] Kim, E. K., Ambriano, J. R., & Roberts, R. S. (1987). Vigorous stationary phase fermentation. Biotechnology and Bioengineering, 30, 805–808. DOI: 10.1002/bit.260300617. http://dx.doi.org/10.1002/bit.26030061710.1002/bit.260300617Search in Google Scholar

[16] Michel-Savin, D., Marchal, R., & Vandecasteele, J. P. (1990). Butyric fermentation: metabolic behaviour and production performance of Clostridium tyrobutyricum in a continuous culture with cell recycle. Applied Microbiology and Biotechnology, 34, 172–177. DOI: 10.1007/BF00166775. http://dx.doi.org/10.1007/BF0016677510.1007/BF00166775Search in Google Scholar

[17] Miyano, K., Ye, K., & Shimizu, K. (2000). Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochemical Engineering Journal, 6, 207–214. DOI: 10.1016/S1369-703X(00)00089-9. http://dx.doi.org/10.1016/S1369-703X(00)00089-910.1016/S1369-703X(00)00089-9Search in Google Scholar

[18] Papanikolaou, S., & Aggelis, G. (2009). Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology, 21, 83–87. DOI: 10.1002/lite.200900017. http://dx.doi.org/10.1002/lite.20090001710.1002/lite.200900017Search in Google Scholar

[19] Papanikolaou, S., & Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 82, 43–49. DOI: 10.1016/S0960-8524(01)00149-3. http://dx.doi.org/10.1016/S0960-8524(01)00149-310.1016/S0960-8524(01)00149-3Search in Google Scholar

[20] Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92, 737–744. DOI: 10.1046/j.1365-2672.2002.01577.x. http://dx.doi.org/10.1046/j.1365-2672.2002.01577.x10.1046/j.1365-2672.2002.01577.xSearch in Google Scholar PubMed

[21] Rane, K. D., & Sims, K. A. (1995). Citric acid production by Candida lipolytica Y 1095 in cell recycle and fed-batch fermentors. Biotechnology and Bioengineering, 46, 325–332. DOI: 10.1002/bit.260460405. http://dx.doi.org/10.1002/bit.26046040510.1002/bit.260460405Search in Google Scholar PubMed

[22] Rymowicz, W., Fatykhova, A. R., Kamzolova, S. V., Rywińska, A., & Morgunov, I. G. (2010). Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Applied Microbiology and Biotechnology, 87, 971–979. DOI: 10.1007/s00253-010-2561-z. http://dx.doi.org/10.1007/s00253-010-2561-z10.1007/s00253-010-2561-zSearch in Google Scholar PubMed

[23] Rymowicz, W., Rywińska, A., Żarowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60, 391–394. DOI: do]10.2478/s11696-006-0071-3. http://dx.doi.org/10.2478/s11696-006-0071-310.2478/s11696-006-0071-3Search in Google Scholar

[24] Rywińska, A., & Rymowicz, W. (2010). High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. Journal of Industrial Microbiology & Biotechnology, 37, 431–435. DOI: 10.1007/s10295-009-0687-8. http://dx.doi.org/10.1007/s10295-009-0687-810.1007/s10295-009-0687-8Search in Google Scholar PubMed

[25] Rywińska, A., Rymowicz, W., Żarowska, B., Musiał, I. (2004). Characteristic of physiology state of Yarrowia lipolytica mutants during continuous citric acid production in membrane reactor on glucose syrup (in Polish). Acta Scientiarum Polonorum: Biotechnologia, 3, 85–95. Search in Google Scholar

[26] Rywińska, A., Rymowicz, W., Żarowska, B., & Skrzypiński, A. (2010). Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World Journal of Microbiology & Biotechnology, 26, 1217–1224. DOI: 10.1007/s11274-009-0291-0. http://dx.doi.org/10.1007/s11274-009-0291-010.1007/s11274-009-0291-0Search in Google Scholar PubMed

[27] Rywińska, A., Rymowicz, W., Żarowska, B., & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technology and Biotechnology, 47, 1–6. Search in Google Scholar

[28] Rywińska, A., Wojtatowicz, M., Żarowska, B., & Rymowicz, W. (2008). Biosynthesis of citric acid by yeast Yarrowia lipolytica A-101-1.31 under repeated batch cultivation. Electronic Journal of Polish Agricultural Universities, 11(1), article No. 07. Search in Google Scholar

[29] Zeng, A.-P., Biebl, H., & Deckwer, W.-D. (1991). Production of 2,3-butanediol in a membrane bioreactor with cell recycle. Applied Microbiology and Biotechnology, 34, 463–468. DOI: 10.1007/BF00180571. http://dx.doi.org/10.1007/BF0018057110.1007/BF00180571Search in Google Scholar

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
  2. Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
  3. New SPME fibre for analysis of mequinol emitted from DVDs
  4. Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
  5. Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
  6. Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
  7. Kinetic study of pyrolysis of waste water treatment plant sludge
  8. Transport phenomena in an agitated vessel with an eccentrically located impeller
  9. Membrane extraction of 1-phenylethanol from fermentation solution
  10. Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
  11. Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
  12. The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
  13. Effectiveness of nitric oxide ozonation
  14. Modelling of nanocrystalline iron nitriding process — influence of specific surface area
  15. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
  16. Carnauba wax microparticles produced by melt dispersion technique
  17. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
  18. Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
  19. Continuous dialysis of sulphuric acid in the presence of zinc sulphate
  20. Differences in affinity of arylstilbazolium derivatives to tetraplex structures
  21. Fast ferritin immunoassay on PDMS microchips
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0093-8/pdf?lang=en
Scroll to top button