Home Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
Article
Licensed
Unlicensed Requires Authentication

Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships

  • Patryk Bielecki EMAIL logo and Wiesław Wasiak
Published/Copyright: January 26, 2011
Become an author with De Gruyter Brill

Abstract

The quantitative structure-retention relationship (QSRR) was used to predict Kováts retention indices of forty-three volatile olefins on the chemically bonded stationary phase, containing 1,4,8,11-tetraazacycloteradecane (cyclam) complexes of copper(II) chloride. Retention indices were correlated with eleven descriptors derived from structures of olefins optimised using the molecular mechanics force field calculations (MM2). Descriptors were generated with the use of quantitative structure-activity relationships (QSAR), semi-empirical Austin Model 1 methods (AM1), and obtained from physicochemical databases. Five well-correlated models were built, with predictive coefficients of determination (R 2) values of 0.993 and 0.995. The dielectric energy (DE) descriptor was identified as being as important as the polarizability (P) descriptor in the process of separation of unsaturated olefins on stationary phases containing metal complexes. The DE index proved to be decisive in distinguishing between the geometric cis and trans isomers of the tested compounds.

[1] Bielecki, P., & Wasiak, W. (2010). Cyclam complexes of Cu(II) and Co(II) as stationary phases for gas chromatography. Journal of Chromatography A, 1217, 4648–4654. DOI: 10.1016/j.chroma.2010.04.067. http://dx.doi.org/10.1016/j.chroma.2010.04.06710.1016/j.chroma.2010.04.067Search in Google Scholar

[2] Bosnich, B., Poon, C. K., & Tobe, M. L. (1965). Complexes of cobalt(III) with a cyclic tetradentate secondary amine. Inorganic Chemistry, 4, 1102–1108. DOI: 10.1021/ic50030a003. http://dx.doi.org/10.1021/ic50030a00310.1021/ic50030a003Search in Google Scholar

[3] Fujitsu Limited (2006). CAChe Work System Pro, Version 7.5.085. Beaverton, OR, USA: Fujitsu Limited. Search in Google Scholar

[4] Chen, H.-F. (2008). Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Analytica Chimica Acta, 609, 24–36. DOI: 10.1016/j.aca.2008.01.003. http://dx.doi.org/10.1016/j.aca.2008.01.00310.1016/j.aca.2008.01.003Search in Google Scholar

[5] Choi, Y., Jin, Y., Nam, W., Kim, H.-C., & Kim, W.-K. (2003). Blockade of peroxynitrite-mediated astrocyte death by manganese(III)-cyclam. Neuroscience Research, 45, 157–161. DOI: 10.1016/S0168-0102(02)00206-7. http://dx.doi.org/10.1016/S0168-0102(02)00206-710.1016/S0168-0102(02)00206-7Search in Google Scholar

[6] Hancock, T., Put, R., Coomans, D., Vander Heyden, Y., & Everingham, Y. (2006). A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies. Chemometrics and Intelligent Laboratory Systems, 76, 185–196. DOI: 10.1016/j.chemolab.2004.11.001. http://dx.doi.org/10.1016/j.chemolab.2004.11.00110.1016/j.chemolab.2004.11.001Search in Google Scholar

[7] Holstein, W., & Hemetsberger, H. (1982). Donor-acceptor complex chromatography (DACC) Part I. Introduction and nomenclature. Chromatographia, 15, 186–190. DOI: 10.1007/BF02261538. http://dx.doi.org/10.1007/BF0226153810.1007/BF02261538Search in Google Scholar

[8] Hunter, T. M., Paisey, S. J., Park, H.-S., Cleghorn, L., Parkin, A., Parsons, S., & Sadler, P. J. (2004). Configurations of metallocyclams and relevance to anti-HIV activity. Journal of Inorganic Biochemistry, 98, 713–719. DOI: 10.1016/j.jinorgbio.2003.10.018. http://dx.doi.org/10.1016/j.jinorgbio.2003.10.01810.1016/j.jinorgbio.2003.10.018Search in Google Scholar

[9] Hypercube Inc. (2007). HyperChem (TM) Release 8.0.3. Gainesville, FL, USA: Hypercube Inc. Search in Google Scholar

[10] Junkes, B. S., Amboni, R.D. M. C., Heinzen, V. E. F., & Yunes, R. A. (2002). Use of semi-empirical topological method to predict the chromatographic retention of branched alkenes. Chromatographia, 55, 75–80. DOI: 10.1007/BF02492318. http://dx.doi.org/10.1007/BF0249231810.1007/BF02492318Search in Google Scholar

[11] Kaliszan, R. (2007). QSRR: Quantitative structure-(chromatographic) retention relationships. Chemical Reviews, 107, 3212–3246. DOI: 10.1021/cr068412z. http://dx.doi.org/10.1021/cr068412z10.1021/cr068412zSearch in Google Scholar

[12] Kaliszan, R. (2000). Recent advances in quantitative structure-retention relationships. In K. Valko (Ed.), Separation methods in drug synthesis and purification (pp. 503–534). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1567-7192(00)80014-5. http://dx.doi.org/10.1016/S1567-7192(00)80014-510.1016/S1567-7192(00)80014-5Search in Google Scholar

[13] Kaliszan, R. (1993). Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 656, 417–435. DOI: 10.1016/0021-9673(93)80812-M. http://dx.doi.org/10.1016/0021-9673(93)80812-M10.1016/0021-9673(93)80812-MSearch in Google Scholar

[14] Kaliszan, R., & Foks, H. (1977). The relationship between the RM values and the connectivity indices for pyrazine carbothioamide derivatives. Chromatographia, 10, 346–349. DOI: 10.1007/BF02274482. http://dx.doi.org/10.1007/BF0227448210.1007/BF02274482Search in Google Scholar

[15] Kavaklı, C., Tuncel, S. A., & Salih, B. (2005). Selectivity of cyclam modified poly(p-chloromethyl styrene-ethyleneglycol dimethacrylate) microbeads for Cu(II), Ni(II), Co(II) and Zn(II). Separation and Purification Technology, 45, 32–40. DOI: 10.1016/j.seppur.2005.02.007. http://dx.doi.org/10.1016/j.seppur.2005.02.00710.1016/j.seppur.2005.02.007Search in Google Scholar

[16] Leugger, A. P., Hertli, L., & Kaden, T. A. (1978). Metal complexes with macrocyclic ligands. XI. Ring size effect on the complexation rates with transition metal ions. Helvetica Chimica Acta, 61, 2296–2306. DOI: 10.1002/hlca.19780610703. http://dx.doi.org/10.1002/hlca.1978061070310.1002/hlca.19780610703Search in Google Scholar

[17] Liu, F., Liang, Y., Cao, C., & Zhou, N. (2007). QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices. Talanta, 72, 1307–1315. DOI: 10.1016/j.talanta.2007.01.038. http://dx.doi.org/10.1016/j.talanta.2007.01.03810.1016/j.talanta.2007.01.038Search in Google Scholar

[18] Mahmoud, M. E., & Soliman, E. M. (1997). Silica-immobilized formylsalicylic acid as a selective phase for the extraction of iron(III). Talanta, 44, 15–22. DOI: 10.1016/S0039-9140(96)01960-1. http://dx.doi.org/10.1016/S0039-9140(96)01960-110.1016/S0039-9140(96)01960-1Search in Google Scholar

[19] Moustafa, N. E. (2009). Gas chromatographic retention times prediction for components of petroleum condensate fraction. Chemical Papers, 63, 608–612. DOI: 10.2478/s11696-009-0045-3. http://dx.doi.org/10.2478/s11696-009-0045-310.2478/s11696-009-0045-3Search in Google Scholar

[20] Moustafa, N. E. (2008). Prediction of GC retention times of complex petroleum fractions based on quantitative structure-retention relationships. Chromatographia, 67, 85–91. DOI: 10.1365/s10337-007-0467-4. http://dx.doi.org/10.1365/s10337-007-0467-410.1365/s10337-007-0467-4Search in Google Scholar

[21] Porath, J., & Larsson, B. (1978). Charge-transfer and watermediated chromatography: I. Electron-acceptor ligands on cross-linked dextran. Journal of Chromatography A, 155, 47–68. DOI: 10.1016/S0021-9673(00)83937-0. http://dx.doi.org/10.1016/S0021-9673(00)83937-010.1016/S0021-9673(00)83937-0Search in Google Scholar

[22] Ren, Y., Liu, H., Yao, X., & Liu, M. (2007). Three-dimensional topographic index applied to the prediction of acyclic C5–C8 alkenes Kováts retention indices on polydimethylsiloxane and squalane columns. Journal of Chromatography A, 1155, 105–111. DOI: 10.1016/j.chroma.2007.04.004. http://dx.doi.org/10.1016/j.chroma.2007.04.00410.1016/j.chroma.2007.04.004Search in Google Scholar PubMed

[23] Rykowska, I., Bielecki, P., & Wasiak, W. (2010). Retention indices and quantum-chemical descriptors of aromatic compounds on stationary phases with chemically bonded copper complexes. Journal of Chromatography A, 1217, 1971–1976. DOI: 10.1016/j.chroma.2010.01.073. http://dx.doi.org/10.1016/j.chroma.2010.01.07310.1016/j.chroma.2010.01.073Search in Google Scholar

[24] Rykowska, I., & Wasiak, W. (2002). Gas chromatography silica packings with chemically bonded complexes of Cu(II) and Cr(III). Analytica Chimica Acta, 451, 271–278. DOI: 10.1016/S0003-2670(01)01404-0. http://dx.doi.org/10.1016/S0003-2670(01)01404-010.1016/S0003-2670(01)01404-0Search in Google Scholar

[25] StatSoft Inc. (2004). Statistica, Version 7.0. Tulsa, OK, USA: StatSoft Inc. Search in Google Scholar

[26] Sujandi, Han, S.-C., Han, D.-S., Jin, M.-J., & Park, S.-E. (2006). Catalytic oxidation of cycloolefins over Co(cyclam)-functionalized SBA-15 material with H2O2. Journal of Catalysis, 243, 410–419. DOI: 10.1016/j.jcat.2006.08.010. http://dx.doi.org/10.1016/j.jcat.2006.08.01010.1016/j.jcat.2006.08.010Search in Google Scholar

[27] Sujandi, Prasetyanto, E. A., Han, D.-S., Lee, S.-C., & Park, S.-E. (2009). Immobilization of Co(III) using tethered cyclam ligand on SBA-15 mesoporous silica for aerial oxidation of ethylbenzene. Catalysis Today, 141, 374–377. DOI: 10.1016/j.cattod.2008.05.031. http://dx.doi.org/10.1016/j.cattod.2008.05.03110.1016/j.cattod.2008.05.031Search in Google Scholar

[28] Wawrzyniak, R. (2009). Quantitative relationship and application of 3-benzylketoimine metal dichlorides in the analysis of volatile hydrocarbons. Journal of Separation Science, 32, 1415–1424. DOI: 10.1002/jssc.200800616. http://dx.doi.org/10.1002/jssc.20080061610.1002/jssc.200800616Search in Google Scholar PubMed

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
  2. Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
  3. New SPME fibre for analysis of mequinol emitted from DVDs
  4. Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
  5. Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
  6. Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
  7. Kinetic study of pyrolysis of waste water treatment plant sludge
  8. Transport phenomena in an agitated vessel with an eccentrically located impeller
  9. Membrane extraction of 1-phenylethanol from fermentation solution
  10. Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
  11. Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
  12. The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
  13. Effectiveness of nitric oxide ozonation
  14. Modelling of nanocrystalline iron nitriding process — influence of specific surface area
  15. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
  16. Carnauba wax microparticles produced by melt dispersion technique
  17. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
  18. Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
  19. Continuous dialysis of sulphuric acid in the presence of zinc sulphate
  20. Differences in affinity of arylstilbazolium derivatives to tetraplex structures
  21. Fast ferritin immunoassay on PDMS microchips
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0085-8/pdf
Scroll to top button