Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
Abstract
The investigations of selective methane oxidation to formaldehyde over T-Nb2O5, the mixture of M-Nb2O5 and H-Nb2O5 as well as H-Nb2O5 were carried out. The tests were conducted under atmospheric pressure, in the temperature range 420–750°C, using oxygen as the oxidizing agent. T-Nb2O5 samples were examined at the contact time 0.7–1.8 s (GHSV 2000–5143 h−1). Other polymorphic forms of niobium(V) oxide were examined at the contact time 0.9 s. Various polymorphic forms of Nb2O5 displayed various formaldehyde and carbon dioxide yield. Using H-Nb2O5 and M-Nb2O5 phases with a block type structure, made it possible to obtain higher formaldehyde selectivity (78 % at 0.9 s) as compared to T-Nb2O5 (47 % at 0.9 s), a polymorphic form which does not have a block type structure. However, the highest space time yield of formaldehyde (46 g per kg of catalyst per h) was obtained over T-Nb2O5 supported on SiO2.
[1] Alegre, V. V., da Silva, M. A. P., & Schmal, M. (2006). Catalytic combustion of methane over palladium alumina modified by niobia. Catalysis Communications, 7, 314–322. DOI: 10.1016/j.catcom.2005.10.018. 10.1016/j.catcom.2005.10.018Search in Google Scholar
[2] Arena, F., Giordano, N., & Parmaliana, A. (1997). Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. II. Redox properties and reactivity of SiO2, MoO3/SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2 systems. Journal of Catalysis, 167, 66–76. DOI: 10.1006/jcat.1997.1546. http://dx.doi.org/10.1006/jcat.1997.154610.1006/jcat.1997.1546Search in Google Scholar
[3] Batiot, C., & Hodnett, B. K. (1996). The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Applied Catalysis A, 137, 179–191. DOI: 10.1016/0926-860X(95)00322-3. http://dx.doi.org/10.1016/0926-860X(95)00322-310.1016/0926-860X(95)00322-3Search in Google Scholar
[4] Berndt, H., Martin, A., Brückner, A., Schreier, E., Müller, D., Kosslick, H., Wolf, G.-U., & Lücke, B. (2000). Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. Journal of Catalysis, 191, 384–400. DOI: 10.1006/jcat.1999.2786. http://dx.doi.org/10.1006/jcat.1999.278610.1006/jcat.1999.2786Search in Google Scholar
[5] Bone, W. A., & Wheeler, R. V. (1902). The slow oxidation of methane at low temperatures. Journal of the Chemical Society, Transactions, 81, 535–548. DOI: 10.1039/CT9028100535. http://dx.doi.org/10.1039/ct902810053510.1039/CT9028100535Search in Google Scholar
[6] Dai, L.-X., Teng, Y.-H., Tabata K., Suzuki, E., & Tatsumi, T. (2000). Mo-containing SBA-1 mesoporous molecular sieves as catalysts for partial oxidation of methane. Chemistry Letters, 29, 794–795. DOI:10.1246/cl.2000.794. http://dx.doi.org/10.1246/cl.2000.79410.1246/cl.2000.794Search in Google Scholar
[7] de Lucas, A., Valverde, J. L., Cañizares, P., & Rodriguez, L. (1999). Partial oxidation of methane to formaldehyde over W/SiO2 catalysts. Applied Catalysis A, 184, 143–152. DOI: 10.1016/S0926-860X(99)00102-7. http://dx.doi.org/10.1016/S0926-860X(99)00102-710.1016/S0926-860X(99)00102-7Search in Google Scholar
[8] de Lucas, A., Valverde, J. L., Rodriguez, L., Sanchez, P., & Garcia, M. T. (2000). Partial oxidation of methane to formaldehyde over Mo/HZSM-5 catalysts. Applied Catalysis A, 203, 81–90. DOI: 10.1016/S0926-860X(00)00472-5. http://dx.doi.org/10.1016/S0926-860X(00)00472-510.1016/S0926-860X(00)00472-5Search in Google Scholar
[9] de Lucas, A., Valverde, J. L., Rodriguez, L., Sanchez, P., & Garcia, M. T. (2001). Modified W/HZSM-5 catalysts: structure and catalytic properties. Journal of Molecular Catalysis A, 171, 195–203. DOI: 10.1016/S1381-1169(01)00100-5. http://dx.doi.org/10.1016/S1381-1169(01)00100-510.1016/S1381-1169(01)00100-5Search in Google Scholar
[10] Du, G., Lim, S., Yang, Y., Wang, C., Pfefferle, L., & Haller, G. L. (2006). Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde. Applied Catalysis A, 302, 48–61. DOI:10.1016/j.apcata.2005.12.013. http://dx.doi.org/10.1016/j.apcata.2005.12.01310.1016/j.apcata.2005.12.013Search in Google Scholar
[11] Faraldos, M., Banares, M. A., Anderson, J. A., Hu, H., Wachs, I. E., & Fierro, J. L. G. (1996). Comparison of silica-supported MoO3 and V2O5 catalysts in the selective partial oxidation of methane. Journal of Catalysis, 160, 214–221. DOI: 10.1006/jcat.1996.0140. http://dx.doi.org/10.1006/jcat.1996.014010.1006/jcat.1996.0140Search in Google Scholar
[12] Fornés, V., López, C, Lopez, H. H., Martínez, A. (2003). Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. Applied Catalysis A, 249, 345–354. DOI: 10.1016/S0926-860X(03)00226-6. http://dx.doi.org/10.1016/S0926-860X(03)00226-610.1016/S0926-860X(03)00226-6Search in Google Scholar
[13] Gatehouse, B. M., & Wadsley, A. D. (1964). The crystal structure of the high temperature form of niobium pen-toxide. Acta Crystallographica A, 17, 1545–1554. DOI: 10.1107/S0365110X6400384X. http://dx.doi.org/10.1107/S0365110X6400384X10.1107/S0365110X6400384XSearch in Google Scholar
[14] Gebauer, D., Kaźmierczak, A., Paryjczak, T., & Rynkowski, J. (1995). Oxide catalyst for direct methane oxidation to methanol and formic aldehyde. Przemysl Chemiczny, 74, 209–212. Search in Google Scholar
[15] Grzybowska-Świerkosz, B. (1993). Elementy katalizy hetero-genicznej. Warszawa: Wydawnictwo Naukowe PWN. Search in Google Scholar
[16] Hargreaves, J. S. J., Hutchings, G. J., & Joyner, R. W. (1990). Control of product selectivity in the partial oxidation of methane. Nature, 348, 428–429. DOI: 10.1038/348428a0. http://dx.doi.org/10.1038/348428a010.1038/348428a0Search in Google Scholar
[17] Kato, K., & Tamura, S. (1975). Die Kristallstruktur von T-Nb2O5. Acta Crystallographica B, 31, 673–677. DOI: 10.1107/S0567740875003603. http://dx.doi.org/10.1107/S056774087500360310.1107/S0567740875003603Search in Google Scholar
[18] Koranne, M. M., Goodwin, J. G., & Marcelin, G. (1994). Oxygen Involvement in the Partial Oxidation of Methane on Supported and Unsupported V2O5. Journal of Catalysis, 148, 378–387. DOI: 10.1006/jcat.1994.1218. http://dx.doi.org/10.1006/jcat.1994.121810.1006/jcat.1994.1218Search in Google Scholar
[19] Labinger, J. A. (1995). Methane activation in homogenous systems. Fuel Processing Technology, 42, 325–338. DOI: 10.1016/0378-3820(94)00107-5. http://dx.doi.org/10.1016/0378-3820(94)00107-510.1016/0378-3820(94)00107-5Search in Google Scholar
[20] Lin, B., Wang, X., Guo, Q., Yang, W., Zhang, Q., & Wang, Y. (2003). Excellent catalytic performances of SBA-15-supported vanadium oxide for partial oxidation of methane to formaldehyde. Chemistry Letters, 32, 860–861. DOI: 10.1246/cl.2003.860. http://dx.doi.org/10.1246/cl.2003.86010.1246/cl.2003.860Search in Google Scholar
[21] Matsumura, H., Okumura, K., Shimamura, T., Ikenaga, N., Miyake, T., & Suzuki, T. (2006). Selective oxidation of methane to formaldehyde over antimony oxide-loaded catalyst. Journal of Molecular Catalysis A, 250, 122–130. DOI: 10.1016/j.molcata. 2006.01.043. http://dx.doi.org/10.1016/j.molcata.2006.01.04310.1016/j.molcata.2006.01.043Search in Google Scholar
[22] McCormick, R. L., & Alptekin, G. O. (2000). Comparison of alumina-, silica-, titania-, and zirconia-supported FePO4 catalysts for selective methane oxidation. Catalysis Today, 55, 269–280. DOI: 10.1016/S0920-5861(99)00243-6. http://dx.doi.org/10.1016/S0920-5861(99)00243-610.1016/S0920-5861(99)00243-6Search in Google Scholar
[23] Mertin, W., Andersson, S., & Gruehn, R. (1970). Über die Kristallstruktur von M-Nb2O5. Journal of Solid State Chemistry, 1, 419–424. DOI: 10.1016/0022-4596(70)90124-6. http://dx.doi.org/10.1016/0022-4596(70)90124-610.1016/0022-4596(70)90124-6Search in Google Scholar
[24] Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Applied Catalysis A, 277, 147–153. DOI: 10.1016/ j.apcata.2004.09.005. http://dx.doi.org/10.1016/j.apcata.2004.09.00510.1016/j.apcata.2004.09.005Search in Google Scholar
[25] Otsuka, K., & Hatano, M. (1992). Boron, Phosphorus, and Alkaline Earth-Metal Mixed Oxides as Active Catalysts in Partial Oxidation of Methane into Formaldehyde. Chemistry Letters, 21, 2397–2400. DOI: 10.1246/cl.1992.2397. http://dx.doi.org/10.1246/cl.1992.239710.1246/cl.1992.2397Search in Google Scholar
[26] Otsuka, K., & Wang, Y. (2001). Direct conversion of methane into oxygenates. Applied Catalysis A, 222, 145–161. DOI: 10.1016/S0926-860X(01)00837-7. http://dx.doi.org/10.1016/S0926-860X(01)00837-710.1016/S0926-860X(01)00837-7Search in Google Scholar
[27] Parmaliana, A., & Arena, F. (1997). Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. I. Catalytic behavior of SiO2, MoO3/SiO2, V2O5/ SiO2, TiO2, and V2O5/TiO2 systems. Journal of Catalysis, 167, 57–65. DOI: 10.1006/jcat.1997.1545. http://dx.doi.org/10.1006/jcat.1997.154510.1006/jcat.1997.1545Search in Google Scholar
[28] Parmaliana, A., Frusteri, F., Mezzapica, A., Miceli, D., Scur-rell, M. S., & Giordano, N. (1993a). A Basic Approach to Evaluate Methane Partial Oxidation Catalysts. Journal of Catalysis, 143, 262–274. DOI: 10.1006/jcat.1993.1271. http://dx.doi.org/10.1006/jcat.1993.127110.1006/jcat.1993.1271Search in Google Scholar
[29] Parmaliana, A., Frusteri, F., Mezzapica, A., Scurrel, M. S., & Giordano, N. (1993b). Novel high activity catalyst for partial oxidation of methane for formaldehyde. Journal of the Chemical Society, Chemical Communications, 751–753. DOI: 10.1039/C39930000751. 10.1039/c39930000751Search in Google Scholar
[30] Schäfer, H., Gruehn, R., & Schulte, F. (1966). The modifications of niobium pentoxide. Angewandte Chemie International Edition in English, 5, 40–52. DOI: 10.1002/anie.196600401. http://dx.doi.org/10.1002/anie.19660040110.1002/anie.196600401Search in Google Scholar
[31] Schmal, M., Souza, M. M. V. M., Alegre, V. V., da Silva, M. A. P., Vargas César, D., & Perez, C. A. C. (2006). Methane oxidation — effect of support, precursor and pretreatment conditions — in situ reaction XPS and DRIFT. Catalysis Today, 118, 392–401. DOI: 10.1016/j.cattod.2006.07.026. http://dx.doi.org/10.1016/j.cattod.2006.07.02610.1016/j.cattod.2006.07.026Search in Google Scholar
[32] Sexton, A. W., Mac Giolla Coda, E., & Hodnett, B. K. (1998). A comparison of the performances of selected catalysts for the partial oxidation of methane to formaldehyde at elevated pressures. Catalysis Today, 46, 127–136. DOI: 10.1016/S0920-5861(98)00334-4. http://dx.doi.org/10.1016/S0920-5861(98)00334-410.1016/S0920-5861(98)00334-4Search in Google Scholar
[33] Sojka, Z., Herman, R. G., & Klier, K. (1991). Selective oxidation of methane to formaldehyde over doubly copper-iron doped zinc oxide catalysts via a selectivity shift mechanism. Journal of the Chemical Society, Chemical Communications, 185–186. DOI: 10.1039/C39910000185. 10.1039/C39910000185Search in Google Scholar
[34] Spencer, N. D. (1988). Partial oxidation of methane to formaldehyde by means of molecular oxygen. Journal of Catalysis, 109, 187–197. DOI: 10.1016/0021-9517(88)90197-2. http://dx.doi.org/10.1016/0021-9517(88)90197-210.1016/0021-9517(88)90197-2Search in Google Scholar
[35] Sun, Q., Herman, R. G., & Klier, K. (1992). Selective oxidation of methane with air over silica catalysts. Catalysis Letters, 16, 251–261. DOI: 10.1007/BF00764337. http://dx.doi.org/10.1007/BF0076433710.1007/BF00764337Search in Google Scholar
[36] Suzuki, K., Hayakawa, T., Shimizu, M., & Takehira, K. (1995). Partial oxidation of methane over silica supported molybdenum oxide catalysts. Catalysis Letters, 30, 159–169. DOI: 10.1007/BF00813682. http://dx.doi.org/10.1007/BF0081368210.1007/BF00813682Search in Google Scholar
[37] Tabero, P. (2006). Preparation of Nb2O5 by thermal decomposition of ammonium niobium oxalate. In Proceedings of the 9th European symposium on thermal analysis and calorimetry, 27–31 August 2006 (TRS-P-54, p. 278). Kraków, Poland: AGH University of Science and Technology, Polish Society of Calorimetry and Thermal Analysis. Search in Google Scholar
[38] Trigueiro, F. E., Ferreira, C. M., Volta, J-C., Gonzalez, W. A., & de Oliveria, P. G. (2006). Effect of niobium addition to Co/γ-Al2O3 catalyst on methane combustion. Catalysis Today, 118, 425–432. DOI: 10.1016/j.cattod.2006.07.030. http://dx.doi.org/10.1016/j.cattod.2006.07.03010.1016/j.cattod.2006.07.030Search in Google Scholar
[39] Wang, C.-B., Herman, R. G., Shi, C., Sun, Q., & Roberts, J. E. (2003). V2O5-SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties. Applied Catalysis A, 247, 321–333. DOI: 10.1016/S0926-860X(03)00105-4. http://dx.doi.org/10.1016/S0926-860X(03)00105-410.1016/S0926-860X(03)00105-4Search in Google Scholar
[40] Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: University Press. Search in Google Scholar
[41] Weng, T., & Wolf, E. E. (1993). Partial oxidation of methane on Mo/Sn/P silica supported catalysts. Applied Catalysis A, 96, 383–396. DOI: 10.1016/0926-860X(90)80024-9. http://dx.doi.org/10.1016/0926-860X(90)80024-910.1016/0926-860X(90)80024-9Search in Google Scholar
[42] Yamada, Y., Ueda, A., Shioyama, H., & Kobayashi, T. (2003). High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements. Applied Catalysis A, 254, 45–58. DOI: 10.1016/S0926-860X(03)00262-X. http://dx.doi.org/10.1016/S0926-860X(03)00262-X10.1016/S0926-860X(03)00262-XSearch in Google Scholar
[43] Sinev, M. Yu., Setiadi, S., & Otsuka, K. (1993). Selectivity control by oxygen pressure in methane oxidation over phosphate catalysts. Mendeleev Communications, 10–11. 10.1070/MC1993v003n01ABEH000196Search in Google Scholar
[44] Zhang, Q., Yang, W., Wang, X., Wang, Y., Shishido, T., & Takehira, K. (2005). Coordination structures of vanadium and iron in MCM-41 and the catalytic properties in partial oxidation of methane. Microporous and Mesoporous Materials, 77, 223–234. DOI: 10.1016/j.micromeso.2004.09.006. http://dx.doi.org/10.1016/j.micromeso.2004.09.00610.1016/j.micromeso.2004.09.006Search in Google Scholar
[45] Zhang, X., He, D., Zhang, Q., Ye, Q., Xu, B., & Zhu, Q. (2003). Selective oxidation of methane to formaldehyde over Mo/ZrO2 catalysts. Applied Catalysis A, 249, 107–117. DOI: 10.1016/S0926-860X(03)00185-6. http://dx.doi.org/10.1016/S0926-860X(03)00185-610.1016/S0926-860X(03)00185-6Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Photocatalytic reduction of CO2 over TiO2 based catalysts
- Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model
- Hydrolysis of titanium sulphate compounds
- Mathematical modelling of selected characterisation procedures for oil fractions
- High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality
- Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
- HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach
- Influence of the reactive distillation column configuration on its performance: A computational study
- Reactive distillation — experimental data for propyl propionate synthesis
- Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller
- Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
- Pore structure of pyrolyzed scrap tires
- Distribution of local heat transfer coefficient values in the wall region of an agitated vessel
- Chemical pretreatment of feed water for membrane distillation
- Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
- Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test
- Production of potassium sulfate from potassium hydrosulfate solutions using alcohols
Articles in the same Issue
- Photocatalytic reduction of CO2 over TiO2 based catalysts
- Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model
- Hydrolysis of titanium sulphate compounds
- Mathematical modelling of selected characterisation procedures for oil fractions
- High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality
- Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
- HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach
- Influence of the reactive distillation column configuration on its performance: A computational study
- Reactive distillation — experimental data for propyl propionate synthesis
- Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller
- Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
- Pore structure of pyrolyzed scrap tires
- Distribution of local heat transfer coefficient values in the wall region of an agitated vessel
- Chemical pretreatment of feed water for membrane distillation
- Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
- Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test
- Production of potassium sulfate from potassium hydrosulfate solutions using alcohols