Abstract
This work was focused on modeling of biochemical processes in a 40-L internal-loop airlift reactor. Due to different mixing in the specific zones of the reactor four main sections, bottom, riser, separator and downcomer, were recognized. Each zone was modeled by an adequate mixing model: bottom and separator sections by the model of ideally-stirred reactor; riser and downcomer sections by the model of plug-flow reactor with axial dispersion. In the model, the effects of mass transfer, hydrodynamics, and reaction kinetics were taken into account. The model of the reactor was experimentally verified by the aerobic enzymatic oxidation of glucose to gluconic acid. Simulations are in good agreement with experimental data.
[1] André, G., Robinson, C. W., & Moo-Young, M. (1983). New criteria for application of the well-mixed model to gas-liquid mass transfer studies. Chemical Engineering Science, 38, 1845–1854. DOI: 10.1016/0009-2509(83)85040-4. http://dx.doi.org/10.1016/0009-2509(83)85040-410.1016/0009-2509(83)85040-4Search in Google Scholar
[2] Blažej, M., Juraščík, M., Annus, J., & Markoš, J. (2004a). Measurement of mass transfer coefficient in an airlift reactor with internal loop using coalescent and non-coalescent liquid media. Journal of Chemical Technology and Biotechnology, 79, 1405–1411. DOI: 10.1002/jctb.1144. http://dx.doi.org/10.1002/jctb.114410.1002/jctb.1144Search in Google Scholar
[3] Blažej, M., Kiša, M., & Markoš, J. (2004b). Scale influence on the hydrodynamics of an internal loop airlift reactor. Chemical Engineering and Processing, 43, 1519–1527. DOI:10.1016/j.cep.2004.02.003. http://dx.doi.org/10.1016/j.cep.2004.02.00310.1016/j.cep.2004.02.003Search in Google Scholar
[4] Camarasa, E., Carvalho, E., Meleiro, L. A. C., Maciel Filho, R., Domingues, A., Wild, G., Poncin, S., Midoux, N., & Bouillard, J. (2001). Development of a complete model for an air-lift reactor. Chemical Engineering Science, 56, 493–502. DOI: 10.1016/S0009-2509(00)00253-0. http://dx.doi.org/10.1016/S0009-2509(00)00253-010.1016/S0009-2509(00)00253-0Search in Google Scholar
[5] Deckwer, W.-D., Burckhart, R., & Zoll, G. (1974). Mixing and mass transfer in tall bubble columns. Chemical Engineering Science, 29, 2177–2188. DOI: 10.1016/0009-2509(74)80025-4. http://dx.doi.org/10.1016/0009-2509(74)80025-410.1016/0009-2509(74)80025-4Search in Google Scholar
[6] Deckwer, W.-D., & Schumpe, A. (1993). Improved tools for bubble column reactor design and scale-up. Chemical Engineering Science, 48, 889–911. DOI: 10.1016/0009-2509(93)80328-N. http://dx.doi.org/10.1016/0009-2509(93)80328-N10.1016/0009-2509(93)80328-NSearch in Google Scholar
[7] Duke, F. R., Weibel, M., Page, D. S., Bulgrin, V. G., & Luthy, J. (1969). The glucose oxidase mechanism. Enzyme activation by substrate. Journal of American Chemical Society, 91, 3904–3909. DOI: 10.1021/ja01042a038. http://dx.doi.org/10.1021/ja01042a03810.1021/ja01042a038Search in Google Scholar
[8] Gibson, Q. H., Swoboda, B. E. P., & Massey, V. (1964). Kinetics and mechanism of action of glucose oxidase. The Journal of Biological Chemistry, 239, 3927–3934. 10.1016/S0021-9258(18)91224-XSearch in Google Scholar
[9] Heijnen, J. J., & Van’t Riet, K. (1984). Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chemical Engineering Journal, 28, B21–B42. DOI:10.1016/0300-9467(84)85025-X. http://dx.doi.org/10.1016/0300-9467(84)85025-X10.1016/0300-9467(84)85025-XSearch in Google Scholar
[10] Jia, X. Q., Wen, J. P., Jiang, Y., Liu, X. L., & Feng, W. (2006). Modeling of batch phenol biodegradation in internal loop airlift bioreactor with gas recirculation by Candida tropicalis. Chemical Engineering Science, 61, 3463–3475. DOI:10.1016/j.ces.2005.12.025. http://dx.doi.org/10.1016/j.ces.2005.12.02510.1016/j.ces.2005.12.025Search in Google Scholar
[11] Juraščík, M., Blažej, M., Annus, J., & Markoš, J. (2006a). Experimental measurements of volumetric mass transfer coefficient by the dynamic pressure-step method in internal loop airlift reactors of different scale. Chemical Engineering Journal, 125, 81–87. DOI: 10.1016/j.cej.2006.08.013. http://dx.doi.org/10.1016/j.cej.2006.08.01310.1016/j.cej.2006.08.013Search in Google Scholar
[12] Juraščík, M., Hucík, M., Sikula, I., Annus, J., & Markoš, J. (2006b). Influence of biomass on hydrodynamics of an internal loop airlift reactor. Chemical Papers, 60, 441–445. DOI:10.2478/s11696-006-0080-2. http://dx.doi.org/10.2478/s11696-006-0080-210.2478/s11696-006-0080-2Search in Google Scholar
[13] Kanai, T., Ichikawa, J., Yoshikawa, H., & Kawase, Y. (2000). Dynamic modeling and simulation of continuous airlift bioreactors. Bioprocess and Biosystems Engineering, 23, 213–220. DOI: 10.1007/s004499900154. 10.1007/s004499900154Search in Google Scholar
[14] Kanai, T., Uzumaki, T., & Kawase, Y. (1996). Simulation of airlift bioreactors: steady-state performance of continuous culture processes. Computers and Chemical Engineering, 20, 1089–1099. DOI: 10.1016/0098-1354(95)00225-1. http://dx.doi.org/10.1016/0098-1354(95)00225-110.1016/0098-1354(95)00225-1Search in Google Scholar
[15] Kaštánek, F., Zahradník, J., Kratochvíl, J., & Čermák, J. (1993). Chemical reactors for gas-liquid systems. Prague: Academia. Search in Google Scholar
[16] Klein, J., Rosenberg, M., Markoš, J., Dolgoš, O., Krošlák, M., & Krištofíková, Ľ. (2002). Biotransformation of glucose to gluconic acid by Aspergillus niger-study of mass transfer in an airlift bioreactor. Biochemical Engineering Journal, 10, 197–205. DOI: 10.1016/S1369-703X(01)00181-4. http://dx.doi.org/10.1016/S1369-703X(01)00181-410.1016/S1369-703X(01)00181-4Search in Google Scholar
[17] Levenspiel, O. (1962). Chemical Reaction Engineering. New York: J. Wiley. Search in Google Scholar
[18] Lo, C.-S., & Hwang, S.-J. (2004). Dynamic behavior of an internal-loop airlift bioreactor for degradation of waste gas containing toluene. Chemical Engineering Science, 59, 4517–4530. DOI: 10.1016/j.ces.2004.07.002. http://dx.doi.org/10.1016/j.ces.2004.07.00210.1016/j.ces.2004.07.002Search in Google Scholar
[19] Nakamura, T., & Yasuyuki, O. (1962). Kinetic studies on the action of glucose oxidase. The Journal of Biochemistry, 52, 214–220. 10.1093/oxfordjournals.jbchem.a127599Search in Google Scholar
[20] Nicolella, C., van Loosdrecht, M. C. M., & Heijnen, S. J. (2000). Particle-based biofilm reactor technology. Trends in Biotechnology, 18, 312–320. DOI: 10.1016/S0167-7799(00)01461-X. http://dx.doi.org/10.1016/S0167-7799(00)01461-X10.1016/S0167-7799(00)01461-XSearch in Google Scholar
[21] Reith, T., Renken, S., & Israël, B. A. (1968). Gas hold-up and axial mixing in the fluid phase of bubble columns. Chemical Engineering Science, 23, 619–629. DOI: 10.1016/0009-2509(68)89007-4. http://dx.doi.org/10.1016/0009-2509(68)89007-410.1016/0009-2509(68)89007-4Search in Google Scholar
[22] Rischbieter, E., Schumpe, A., & Wunder, V. (1996). Gas solubilities in aqueous solutions of organic substances. Journal of Chemical and Engineering Data, 41, 809–812. DOI:10.1021/je960039c. http://dx.doi.org/10.1021/je960039c10.1021/je960039cSearch in Google Scholar
[23] Rubio, F. C., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., & Grima, E. M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62, 71–86. http://dx.doi.org/10.1002/(SICI)1097-0290(19990105)62:1<71::AID-BIT9>3.0.CO;2-T10.1002/(SICI)1097-0290(19990105)62:1<71::AID-BIT9>3.0.CO;2-TSearch in Google Scholar
[24] Rubio, F. C., Garcia, J. L., Molina, E., & Chisti, Y. (2001). Axial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models. Chemical Engineering Journal, 84, 43–55. DOI: 10.1016/S1385-8947(00)00261-8. http://dx.doi.org/10.1016/S1385-8947(00)00261-810.1016/S1385-8947(00)00261-8Search in Google Scholar
[25] Schumpe, A. (1993). The estimation of gas solubilities in salt solutions. Chemical Engineering Science, 48, 153–158. DOI:10.1016/0009-2509(93)80291-W. http://dx.doi.org/10.1016/0009-2509(93)80291-W10.1016/0009-2509(93)80291-WSearch in Google Scholar
[26] Sikula, I., Juraščík, M., & Markoš, J. (2006). Modelling of enzymatic reaction in an internal loop airlift reactor. Chemical Papers, 60, 446–453. DOI: 10.2478/s11696-006-0081-1. http://dx.doi.org/10.2478/s11696-006-0081-110.2478/s11696-006-0081-1Search in Google Scholar
[27] Towell, G. D., & Ackerman, G. H. (1972). Axial mixing of liquid and gas in large bubble reactors. In Proceedings of 5th European/2nd International symposium on chemical reactor engineering, 2–4 May 1972 (pp. B3.1–B3.13). Amsterdam: Elsevier. Search in Google Scholar
[28] Znad, H., Báleš, V., Markoš, J., & Kawase, Y. (2004). Modeling and simulation of airlift bioreactors. Biochemical Engineering Journal, 21, 73–81. DOI: 10.1016/j.bej.2004.05.005. http://dx.doi.org/10.1016/j.bej.2004.05.00510.1016/j.bej.2004.05.005Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Photocatalytic reduction of CO2 over TiO2 based catalysts
- Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model
- Hydrolysis of titanium sulphate compounds
- Mathematical modelling of selected characterisation procedures for oil fractions
- High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality
- Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
- HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach
- Influence of the reactive distillation column configuration on its performance: A computational study
- Reactive distillation — experimental data for propyl propionate synthesis
- Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller
- Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
- Pore structure of pyrolyzed scrap tires
- Distribution of local heat transfer coefficient values in the wall region of an agitated vessel
- Chemical pretreatment of feed water for membrane distillation
- Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
- Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test
- Production of potassium sulfate from potassium hydrosulfate solutions using alcohols
Articles in the same Issue
- Photocatalytic reduction of CO2 over TiO2 based catalysts
- Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model
- Hydrolysis of titanium sulphate compounds
- Mathematical modelling of selected characterisation procedures for oil fractions
- High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality
- Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
- HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach
- Influence of the reactive distillation column configuration on its performance: A computational study
- Reactive distillation — experimental data for propyl propionate synthesis
- Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller
- Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
- Pore structure of pyrolyzed scrap tires
- Distribution of local heat transfer coefficient values in the wall region of an agitated vessel
- Chemical pretreatment of feed water for membrane distillation
- Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
- Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test
- Production of potassium sulfate from potassium hydrosulfate solutions using alcohols