Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure
Abstract
The phenylcarbamic acid derivatives with N-phenylpiperazine moiety in the molecule have been prepared. The structure has been confirmed by elemental analysis, IR, 1H NMR, and mass spectral data. For the prepared set of the compounds the lipophilicity parameters have been determined. The experimentally obtained lipophilicity parameters have been correlated with theoretical entries obtained by different computer programs based on the neural network and fragmental methods.
[1] Pokorná, M., Cesk. Slov. Farm. 47, 14 (1998). Search in Google Scholar
[2] Sládková, D. and Čižmárik, J., Pharmazie 55, 540 (2000). Search in Google Scholar
[3] Andriamainty, F., Filípek, J., Kovács, P., and Balgavý, P., Pharmazie 51, 242 (1996). Search in Google Scholar
[4] Tagat, R. J., McCombie, W. S., Steensma, W. R., Lin, I.-S., Nazareno, V. D., Baroudy, B., Vantuno, N., Xu, S., and Liu, J., Bioorg. Med. Chem. Lett. 11, 2143 (2001). http://dx.doi.org/10.1016/S0960-894X(01)00381-X10.1016/S0960-894X(01)00381-XSearch in Google Scholar
[5] Kozlowski, A. J., Zhou, G., Tagat, R. J., Lin, I.-S., McCombie, W. S., Ruperto, B. V., Duffy, A. R., McQuade, A. R., Crosby, G., Taylor, A. L., Billard, W., Binch, H., and Lachowicz, E. J., Bioorg. Med. Chem. Lett. 12, 791 (2002). http://dx.doi.org/10.1016/S0960-894X(02)00023-910.1016/S0960-894X(02)00023-9Search in Google Scholar
[6] Chabrier, E.-P., Auguet, R., Spinnewyn, B., Auvin, S., Cornet, S., Demerlé-Pallardy, C., Guimard-Favre, Ch., Marin, G.-J., Pignol, B., Gillard-Roubert, V., Roussillot-Charnet, Ch., Schulz, J., Viossat, I., Bigg, D., and Moncada, S., Proc. Natl. Acad. Sci. USA 96, 10824 (1999). http://dx.doi.org/10.1073/pnas.96.19.1082410.1073/pnas.96.19.10824Search in Google Scholar
[7] Barbaro, R., Betti, L., Botta, M., Corelli, F., Giannaccini, G., Maccari, L., Manetti, F., Strappaghetti, G., and Corsano, S., Bioorg. Med. Chem. 10, 361 (2002). http://dx.doi.org/10.1016/S0968-0896(01)00286-310.1016/S0968-0896(01)00286-3Search in Google Scholar
[8] Cecchetti, V., Schiaffella, F., Tabarrini, O., and Fravolini, A., Bioorg. Med. Chem. Lett. 10, 465 (2000). http://dx.doi.org/10.1016/S0960-894X(00)00016-010.1016/S0960-894X(00)00016-0Search in Google Scholar
[9] Brizzi, V., Francioli, M., Brufani, M., Filocamo, L., Bruni, G., and Massarelli, P., Farmaco 54, 713 (1999). http://dx.doi.org/10.1016/S0014-827X(99)00077-410.1016/S0014-827X(99)00077-4Search in Google Scholar
[10] Malík, I., Sedlárová, E., Csöllei, J., Račanská, E., Čižmárik, J., and Kurfürst, P., Sci. Pharm. 72, 283 (2004). Search in Google Scholar
[11] Gyűrösiová, L., Sedlárová, E., and Čižmárik, J., Chem. Pap. 56, 340 (2002). Search in Google Scholar
[12] Tetko, V. I. and Tanchuk, Yu. V., J. Chem. Inf. Comput. Sci. 42, 1136 (2002). http://dx.doi.org/10.1021/ci025515j10.1021/ci025515jSearch in Google Scholar PubMed
[13] Medič-Šarić, M., Mornar, A., and Jasprica, I., Acta Pharm. 54, 91 (2004). Search in Google Scholar
[14] Leo, A. J. and Hockman, D., Persp. Drug Discov. Design 18, 19 (2000). http://dx.doi.org/10.1023/A:100873911075310.1023/A:1008739110753Search in Google Scholar
[15] Wang, R., Fu, Y., and Lai, L., J. Chem. Inf. Comput. Sci. 37, 615 (1997). http://dx.doi.org/10.1021/ci960169p10.1021/ci960169pSearch in Google Scholar
[16] Tetko, V. I., Tanchuk, Yu. V., Kasheva, N. T., and Villa, P. E. A., J. Chem. Inf. Comput. Sci. 41, 1488 (2001). http://dx.doi.org/10.1021/ci000392t10.1021/ci000392tSearch in Google Scholar PubMed
[17] Taskinen, J. and Yliruusi, J., Adv. Drug Deliv. Rev. 55, 1163 (2003). http://dx.doi.org/10.1016/S0169-409X(03)00117-010.1016/S0169-409X(03)00117-0Search in Google Scholar
[18] Jain, N. and Yalkowsky, S. H., J. Pharm. Sci. 90, 234 (2000). http://dx.doi.org/10.1002/1520-6017(200102)90:2<234::AID-JPS14>3.0.CO;2-V10.1002/1520-6017(200102)90:2<234::AID-JPS14>3.0.CO;2-VSearch in Google Scholar
[19] Čižmárik, J., Lehotay, J., Nga, V. T. P., and Bednáriková, A., Pharmazie 48, 149 (1993). Search in Google Scholar
[20] Devillers, J., Analusis 27, 23 (1999). http://dx.doi.org/10.1051/analusis:199927002310.1051/analusis:1999270023Search in Google Scholar
[21] Kubinyi, H., QSAR: Hansch Analysis and Approaches. Wiley—VCH, Weinheim, 1993. 10.1002/9783527616824Search in Google Scholar
[22] Mannhold, R. and Petrauskas, A., QSAR Comb. Sci. 22, 466 (2003). http://dx.doi.org/10.1002/qsar.20039003610.1002/qsar.200390036Search in Google Scholar
© 2006 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Carbon dioxide production in the oscillating Belousov—Zhabotinsky reaction with oxalic acid
- Potentiometric and thermodynamic studies of 3-methyl-1-phenyl-{p-[N-(pyrimidin-2-yl)-sulfamoyl]phenylazo}-2-pyrazolin-5-one and its metal complexes
- Spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-Methylpyridine and 4-Methylpyridine Cu4OBrnCl(6−n)L4 complexes
- Anodic stripping voltammetric determination of lead and cadmium in soil extracts
- Gold and silver determination in Waters by SPHERON® Thiol 1000 preconcentration and ETAAS
- Syntheses, geometry optimization, and electronic structure of N-and C-substituted benzonaphthyridines
- Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure
- New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE
- Furan-containing thiacyanine analogs and their antimicrobial activity
- Synthesis and biological activity of new 1,3,4-thiadiazole derivatives
- Synthesis and identification of immunogen medroxyprogesterone acetate residues in edible foods and preparation of the Antisera
- Synthesis and characterization of oligosalicylaldehyde-based epoxy resins
- Extracellular polysaccharides produced by acapsular mutant of Cryptococcus laurentii
- Liquid chromatography of synthetic polymers under limiting conditions of insolubility. I. Principle of the method
- Transport velocities of different particulate materials in pneumatic conveying
- Nitrous oxide emissions from waste incineration
Articles in the same Issue
- Carbon dioxide production in the oscillating Belousov—Zhabotinsky reaction with oxalic acid
- Potentiometric and thermodynamic studies of 3-methyl-1-phenyl-{p-[N-(pyrimidin-2-yl)-sulfamoyl]phenylazo}-2-pyrazolin-5-one and its metal complexes
- Spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-Methylpyridine and 4-Methylpyridine Cu4OBrnCl(6−n)L4 complexes
- Anodic stripping voltammetric determination of lead and cadmium in soil extracts
- Gold and silver determination in Waters by SPHERON® Thiol 1000 preconcentration and ETAAS
- Syntheses, geometry optimization, and electronic structure of N-and C-substituted benzonaphthyridines
- Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure
- New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE
- Furan-containing thiacyanine analogs and their antimicrobial activity
- Synthesis and biological activity of new 1,3,4-thiadiazole derivatives
- Synthesis and identification of immunogen medroxyprogesterone acetate residues in edible foods and preparation of the Antisera
- Synthesis and characterization of oligosalicylaldehyde-based epoxy resins
- Extracellular polysaccharides produced by acapsular mutant of Cryptococcus laurentii
- Liquid chromatography of synthetic polymers under limiting conditions of insolubility. I. Principle of the method
- Transport velocities of different particulate materials in pneumatic conveying
- Nitrous oxide emissions from waste incineration