Home Carbon dioxide production in the oscillating Belousov—Zhabotinsky reaction with oxalic acid
Article
Licensed
Unlicensed Requires Authentication

Carbon dioxide production in the oscillating Belousov—Zhabotinsky reaction with oxalic acid

  • P. Ševčík EMAIL logo , D. Mišicák and L’. Adamčíková
Published/Copyright: February 1, 2006
Become an author with De Gruyter Brill

Abstract

A new volumetric method for monitoring the oscillating Belousov—Zhabotinsky reaction with oxalic acid is described. While an oscillatory behavior in the potential of the Pt redox electrode at slow stirring without inert gas bubbling can be observed, a monotonous, nonoscillatory course was found both at the slow and rapid stirring rates for the carbon dioxide evolution. Possible reasons for such observations are discussed.

[1] Epstein, I. R. and Pojman, J. A., An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, New York, 1998. 10.1093/oso/9780195096705.001.0001Search in Google Scholar

[2] Field, R. J. and Burger, M., Oscillations and Traveling Waves in Chemical Systems. Wiley and Sons, New York, 1985. Search in Google Scholar

[3] Noszticzius, Z. and Bódiss, J., J. Am. Chem. Soc. 101, 3177 (1979). http://dx.doi.org/10.1021/ja00506a00710.1021/ja00506a007Search in Google Scholar

[4] Ševčík, P. and Adamčíková, L’., Collect. Czech. Chem. Commun. 47, 891 (1982). Search in Google Scholar

[5] Rastogi, R. P., Yadav, K. D. S., and Rastogi, P., Indian J. Chem. 15A, 338 (1977). Search in Google Scholar

[6] Wittmann, M., Stirling, P., and Bódiss, J., Chem. Phys. Lett. 141, 241 (1987). http://dx.doi.org/10.1016/0009-2614(87)85017-010.1016/0009-2614(87)85017-0Search in Google Scholar

[7] Guedes, M. C. and Faria, R. B. J., J. Phys. Chem., A 102, 1973 (1998). http://dx.doi.org/10.1021/jp973078j10.1021/jp973078jSearch in Google Scholar

[8] Rastogi, R. P., Prem Chand, Pandey, M. K., and Das, M., J. Phys. Chem., A 109, 4562 (2005). http://dx.doi.org/10.1021/jp058052410.1021/jp0580524Search in Google Scholar

[9] Rastogi, R. P. and Prem Chand, Chem. Phys. Lett. 369, 434 (2003). http://dx.doi.org/10.1016/S0009-2614(02)01980-210.1016/S0009-2614(02)01980-2Search in Google Scholar

[10] Ševčík, P. and Adamčíková, L’., Collect. Czech. Chem. Commun. 50, 799 (1985). http://dx.doi.org/10.1135/cccc1985079910.1135/cccc19850799Search in Google Scholar

[11] Gaspar, V. and Galambosi, P., J. Phys. Chem. 90, 2222 (1986). http://dx.doi.org/10.1021/j100401a04510.1021/j100401a045Search in Google Scholar

[12] Ševčík, P. and Adamčíková, L’., J. Chem. Phys. 91, 1012 (1989). http://dx.doi.org/10.1063/1.45722510.1063/1.457225Search in Google Scholar

[13] Pelle, K., Wittmann, M., Lovrics, K., Noszticzius, Z., Turco-Liveri, M. L., and Lombardo, R., J. Phys. Chem., A 108, 5377 (2004). http://dx.doi.org/10.1021/jp048817s10.1021/jp048817sSearch in Google Scholar

[14] Pelle, K., Wittmann, M., Noszticzius, Z., Lombardo, R., Sbriziolo, C., and Turco-Liveri, M. L., J. Phys. Chem., A 107, 2039 (2003). http://dx.doi.org/10.1021/jp026713g10.1021/jp026713gSearch in Google Scholar

[15] Ševčík, P., Kissimonová, K., and Adamčíková, L’., J. Phys. Chem., A 104, 3958 (2000). http://dx.doi.org/10.1021/jp993156y10.1021/jp993156ySearch in Google Scholar

[16] Ševčík, P., Kissimonová, K., and Adamčíková, L’., J. Phys. Chem., A 107, 1290 (2003). http://dx.doi.org/10.1021/jp021301t10.1021/jp021301tSearch in Google Scholar

[17] Bowers, P. G., Bar-Eli, K., and Noyes, R. M., J. Chem. Soc., Faraday Trans. 92, 2843 (1996). http://dx.doi.org/10.1039/ft996920284310.1039/ft9969202843Search in Google Scholar

Published Online: 2006-2-1
Published in Print: 2006-2-1

© 2006 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Carbon dioxide production in the oscillating Belousov—Zhabotinsky reaction with oxalic acid
  2. Potentiometric and thermodynamic studies of 3-methyl-1-phenyl-{p-[N-(pyrimidin-2-yl)-sulfamoyl]phenylazo}-2-pyrazolin-5-one and its metal complexes
  3. Spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-Methylpyridine and 4-Methylpyridine Cu4OBrnCl(6−n)L4 complexes
  4. Anodic stripping voltammetric determination of lead and cadmium in soil extracts
  5. Gold and silver determination in Waters by SPHERON® Thiol 1000 preconcentration and ETAAS
  6. Syntheses, geometry optimization, and electronic structure of N-and C-substituted benzonaphthyridines
  7. Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure
  8. New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE
  9. Furan-containing thiacyanine analogs and their antimicrobial activity
  10. Synthesis and biological activity of new 1,3,4-thiadiazole derivatives
  11. Synthesis and identification of immunogen medroxyprogesterone acetate residues in edible foods and preparation of the Antisera
  12. Synthesis and characterization of oligosalicylaldehyde-based epoxy resins
  13. Extracellular polysaccharides produced by acapsular mutant of Cryptococcus laurentii
  14. Liquid chromatography of synthetic polymers under limiting conditions of insolubility. I. Principle of the method
  15. Transport velocities of different particulate materials in pneumatic conveying
  16. Nitrous oxide emissions from waste incineration
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-006-0001-4/pdf
Scroll to top button