Home Energetics and kinetics of carbonate orientational ordering in vaterite calcium carbonate
Article
Licensed
Unlicensed Requires Authentication

Energetics and kinetics of carbonate orientational ordering in vaterite calcium carbonate

  • Jianwei Wang EMAIL logo and Udo Becker
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Vaterite is a less stable anhydrous crystalline calcium carbonate than calcite or aragonite and, thus, a rare mineral in geologic settings. However, vaterite is commonly found in biological environments. The mechanisms of crystal nucleation, transformation, and stabilization of vaterite in host materials remain unresolved. Understanding these issues may lead to answer some fundamental questions such as carbonate formation in geological systems and the intriguing occurrence of vaterite in biological systems. This requires an accurate knowledge of the crystal structure of vaterite and its order-disorder transformation. This study employs molecular-dynamics simulations to understand the thermodynamic stability of vaterite and kinetics of the orientational ordering of the carbonate ions. The results show that the potential energy change from disordered to ordered vaterite is about -11 kJ/mol, which significantly changes the relative stabilities of vaterite with respect to other anhydrous calcium carbonate polymorphs, including amorphous calcium carbonate. The heat capacity of vaterite is estimated to be 102.1 ± 0.4 J/(K⋅mol), comparable to an experimental result of 91.5 ± 3.8 J/(K⋅mol). The molecular-dynamics simulations also show similar energies for vaterite with different stacking structures, suggesting possible stacking disordering along the [001] axis. Cyclic high-temperature simulated-annealing molecular-dynamics simulations show that the CO3 orientational disorder-order transition is thermally activated. The calculated activation energy for the transition is 94 ± 10 kJ/mol with a pre-exponential factor of ∼1.6 × 1013 s−1. A good linear fit of the logarithmic transition rate to inverse temperature (the Arrhenius plot) indicates that the transition is controlled by a single activation process that is related to a cooperative rotational motion of CO3 groups in vaterite.

Received: 2011-9-1
Accepted: 2012-4-24
Published Online: 2015-4-2
Published in Print: 2012-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Actinides in Geology, Energy, and the Environment. Petrography and geochronology of the Pele Mountain quartz-pebble conglomerate uranium deposit, Elliot Lake District, Canada
  2. Celadonite in continental flood basalts of the Columbia River Basalt Group
  3. Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite
  4. Grossular: A crystal-chemical, calorimetric, and thermodynamic study
  5. Redetermination of high-temperature heat capacity of Mg2SiO4 ringwoodite: Measurement and lattice vibrational model calculation
  6. Thermal behavior of realgar As4S4, and of arsenolite As2O3 and non-stoichiometric As8S8+x crystals produced from As4S4 melt recrystallization
  7. Thermodynamics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution
  8. Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes
  9. In-situ Raman spectroscopic study of sulfur speciation in oxidized magmatic-hydrothermal fluids
  10. Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite
  11. Hydrous fluid as the growth media of natural polycrystalline diamond, carbonado: Implication from IR spectra and microtextural observations
  12. Metastable equilibrium in the C-H-O system: Graphite deposition in crustal fluids
  13. Controlled morphogenesis of amorphous silica and its relevance to biosilicification
  14. Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution
  15. Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline
  16. Isothermal compression of face-centered cubic iron
  17. Bonding and structural changes in siderite at high pressure
  18. Energetics and kinetics of carbonate orientational ordering in vaterite calcium carbonate
  19. Growth process and crystallographic properties of ammonia-induced vaterite
  20. Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy: A first example of the [Bi2Cl10]4− anion
  21. Experimental study of mineral equilibria in the system K2O(Li2O)-Al2O3-SiO2-H2O-HF at 300 to 600 °C and 100 MPa with application to natural greisen systems
  22. Tobelite and NH+4-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): Structure and crystal chemistry
  23. The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: Morphology, structure, and composition
  24. Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study
  25. Kircherite, a new mineral of the cancrinite-sodalite group with a 36-layer stacking sequence: Occurrence and crystal structure
  26. Molecular models of birnessite and related hydrated layered minerals
  27. Letter: Gold-telluride nanoparticles revealed in arsenic-free pyrite
  28. Letter: XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 °C, 800 bar
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2012.3990/html
Scroll to top button