Home Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline
Article
Licensed
Unlicensed Requires Authentication

Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline

  • Andreas Ertl EMAIL logo , Uwe Kolitsch , M. Darby Dyar , John M. Hughes , George R. Rossman , Adam Pieczka , Darrell J. Henry , Federico Pezzotta , Stefan Prowatke , Christian L. Lengauer , Wilfried Körner , Franz Brandstätter , Carl A. Francis , Markus Prem and Ekkehart Tillmanns
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Fe2+- and Mn2+-rich tourmalines were used to test whether Fe2+ and Mn2+ substitute on the Z site of tourmaline to a detectable degree. Fe-rich tourmaline from a pegmatite from Lower Austria was characterized by crystal-structure refinement, chemical analyses, and Mössbauer and optical spectroscopy. The sample has large amounts of Fe2+ (~2.3 apfu), and substantial amounts of Fe3+ (~1.0 apfu). On basis of the collected data, the structural refinement and the spectroscopic data, an initial formula was determined by assigning the entire amount of Fe3+ (no delocalized electrons) and Ti4+ to the Z site and the amount of Fe2+ and Fe3+ from delocalized electrons to the Y-Z ED doublet (delocalized electrons between Y-Z and Y-Y): X (Na0.9Ca0.1) Y(Fe2+2.0Al0.4Mn2+0.3Fe3+0.2) Z(Al4.8Fe3+0.8Fe2+0.2Ti4+0.1) T(Si5.9Al0.1)O18 (BO3)3V(OH)3W[O0.5F0.3(OH)0.2] with a = 16.039(1) and c = 7.254(1) Å. This formula is consistent with lack of Fe2+ at the Z site, apart from that occupancy connected with delocalization of a hopping electron.

The formula was further modified by considering two ED doublets to yield: X(Na0.9Ca0.1) Y(Fe2+1.8Al0.5Mn2+0.3Fe3+0.3) Z(Al4.8Fe3+0.7Fe2+0.4Ti4+0.1) T(Si5.9Al0.1)O18 (BO3)3V(OH)3W[O0.5F0.3(OH)0.2]. This formula requires some Fe2+ (~0.3 apfu) at the Z site, apart from that connected with delocalization of a hopping electron. Optical spectra were recorded from this sample as well as from two other Fe2+-rich tourmalines to determine if there is any evidence for Fe2+ at Y and Z sites. If Fe2+ were to occupy two different 6-coordinated sites in significant amounts and if these polyhedra have different geometries or metal-oxygen distances, bands from each site should be observed. However, even in high-quality spectra we see no evidence for such a doubling of the bands. We conclude that there is no ultimate proof for Fe2+ at the Z site, apart from that occupancy connected with delocalization of hopping electrons involving Fe cations at the Y and Z sites.

A very Mn-rich tourmaline from a pegmatite on Elba Island, Italy, was characterized by crystal-structure determination, chemical analyses, and optical spectroscopy. The optimized structural formula is X(Na0.60.4) Y(Mn2+1.3Al1.2Li0.5) ZAl6TSi6O18 (BO3)3V(OH)3 W[F0.5O0.5], with a = 15.951(2) and c = 7.138(1) Å. Within a 3σ error there is no evidence for Mn occupancy at the Z site by refinement of Al ↔ Mn, and, thus, no final proof for Mn2+ at the Z site, either.

Oxidation of these tourmalines at 700-750 °C and 1 bar for 10-72 h converted Fe2+ to Fe3+ and Mn2+ to Mn3+ with concomitant exchange with Al of the Z site. The refined ZFe content in the Fe-rich tourmaline increased by ~40% relative to its initial occupancy. The refined YFe content was smaller and the <Y-O> distance was significantly reduced relative to the unoxidized sample. A similar effect was observed for the oxidized Mn2+-rich tourmaline. Simultaneously, H and F were expelled from both samples as indicated by structural refinements, and H expulsion was indicated by infrared spectroscopy. The final species after oxidizing the Fe2+-rich tourmaline is buergerite. Its color had changed from blackish to brown-red. After oxidizing the Mn2+-rich tourmaline, the previously dark yellow sample was very dark brown-red, as expected for the oxidation of Mn2+ to Mn3+. The unit-cell parameter a decreased during oxidation whereas the c parameter showed a slight increase.

Received: 2011-10-18
Accepted: 2012-5-3
Published Online: 2015-4-2
Published in Print: 2012-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Actinides in Geology, Energy, and the Environment. Petrography and geochronology of the Pele Mountain quartz-pebble conglomerate uranium deposit, Elliot Lake District, Canada
  2. Celadonite in continental flood basalts of the Columbia River Basalt Group
  3. Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite
  4. Grossular: A crystal-chemical, calorimetric, and thermodynamic study
  5. Redetermination of high-temperature heat capacity of Mg2SiO4 ringwoodite: Measurement and lattice vibrational model calculation
  6. Thermal behavior of realgar As4S4, and of arsenolite As2O3 and non-stoichiometric As8S8+x crystals produced from As4S4 melt recrystallization
  7. Thermodynamics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution
  8. Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes
  9. In-situ Raman spectroscopic study of sulfur speciation in oxidized magmatic-hydrothermal fluids
  10. Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite
  11. Hydrous fluid as the growth media of natural polycrystalline diamond, carbonado: Implication from IR spectra and microtextural observations
  12. Metastable equilibrium in the C-H-O system: Graphite deposition in crustal fluids
  13. Controlled morphogenesis of amorphous silica and its relevance to biosilicification
  14. Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution
  15. Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline
  16. Isothermal compression of face-centered cubic iron
  17. Bonding and structural changes in siderite at high pressure
  18. Energetics and kinetics of carbonate orientational ordering in vaterite calcium carbonate
  19. Growth process and crystallographic properties of ammonia-induced vaterite
  20. Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy: A first example of the [Bi2Cl10]4− anion
  21. Experimental study of mineral equilibria in the system K2O(Li2O)-Al2O3-SiO2-H2O-HF at 300 to 600 °C and 100 MPa with application to natural greisen systems
  22. Tobelite and NH+4-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): Structure and crystal chemistry
  23. The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: Morphology, structure, and composition
  24. Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study
  25. Kircherite, a new mineral of the cancrinite-sodalite group with a 36-layer stacking sequence: Occurrence and crystal structure
  26. Molecular models of birnessite and related hydrated layered minerals
  27. Letter: Gold-telluride nanoparticles revealed in arsenic-free pyrite
  28. Letter: XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 °C, 800 bar
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2012.4028/html
Scroll to top button