Home Coupled (Li+, Al3+) substitutions in hydrous forsterite
Article
Licensed
Unlicensed Requires Authentication

Coupled (Li+, Al3+) substitutions in hydrous forsterite

  • Feiwu Zhang EMAIL logo and Kate Wright
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Atomistic computer simulations methods are used to examine the influence of Li and Al impurities on the uptake of hydrogen in forsterite. We find that Li′Mg+OH· O is more stable at the Mg1 site than at the Mg2 site and that Li+ increases the ability of forsterite to incorporate hydrogen associated with magnesium sites. When both Al and Li are present, then a complex comprising a bound Al·Mg2-Li′Mg1 defect is highly stable. When all three impurity components are mixed together, then hydrogen will strongly partition to Si vacancies forming the hydrogarnet defect. Thus the ability of forsterite to incorporate water is likely to be intimately linked to the nuances of defect chemistry, and to concentrations of impurity elements such as Li+ and Al3+.

Received: 2011-6-13
Accepted: 2011-11-14
Published Online: 2015-4-2
Published in Print: 2012-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Redetermination of the structure of 5C pyrrhotite at low temperature and at room temperature
  2. Thermal elastic behavior of CaSiO3-walstromite: A powder X-ray diffraction study up to 900 °C
  3. Magnesiohögbomite-2N4S: A new polysome from the central Sør Rondane Mountains, East Antarctica
  4. Hanjiangite, a new barium-vanadium phyllosilicate carbonate mineral from the Shiti barium deposit in the Dabashan region, China
  5. Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M
  6. Focused ion beam preparation and characterization of single-crystal samples for high-pressure experiments in the diamond-anvil cell
  7. Phase stability and elastic properties of the NAL and CF phases in the NaMg2Al5SiO12 system from first principles
  8. Redistribution of REE, Y, Th, and U at high pressure: Allanite-forming reactions in impure meta-quartzites (Sesia Zone, Western Italian Alps)
  9. MAS NMR measurements and ab initio calculations of the 29Si chemical shifts in dumortierite and holtite
  10. Aluminum ordering and clustering in Al-rich synthetic phlogopite: {1H} → 29Si CPMAS HETCOR spectroscopy and atomistic calculations
  11. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies)
  12. Recrystallization rims in zircon (Valle d’Arbedo, Switzerland): An integrated cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM study
  13. Temperature and humidity effects on ferric sulfate stability and phase transformation
  14. Unraveling complex <2 μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity
  15. Variations in elastic and anelastic properties of Co3O4 due to magnetic and spin-state transitions
  16. High-pressure behavior of space group P2/n omphacite
  17. Twinning in pyromorphite: The first documented occurrence of twinning by merohedry in the apatite supergroup
  18. Spectroscopic characterization of alkali-metal exchanged natrolites
  19. Coupled (Li+, Al3+) substitutions in hydrous forsterite
  20. Crystal chemistry of trioctahedral micas-2M1 from Bunyaruguru kamafugite (southwest Uganda)
  21. Menchettiite, AgPb2.40Mn1.60Sb3As2S12, a new sulfosalt belonging to the lillianite series from the Uchucchacua polymetallic deposit, Lima Department, Peru
  22. Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulphate mineral from Jáchymov, Czech Republic
  23. Amorphous materials: Properties, structure, and durability
  24. Amorphous materials: Properties, structure, and durability
  25. Letter. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy
  26. Letter. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2012.3913/html
Scroll to top button