Abstract
A thermodynamic model for the growth of a reaction rim with lamellar internal microstructure is derived. Chemical mass transfer across the rim and the chemical segregation within the reaction fronts, at which the lamellar microstructure is produced, are considered as the only dissipative processes involved in rim growth. Depending on their relative rates, either one of these processes may be rate limiting. Rim growth is parabolic when mass transfer across the growing rim is rate limiting, and it is linear when the material redistribution within either one or both of the reaction fronts is rate limiting. The transition between these two extreme scenarios is continuous. The controlling factors are the characteristic length scale of the lamellar microstructure and the relative rates of chemical mass transfer across the rim and within the reaction fronts. Reaction rims with both lamellar and layered internal microstructures have been produced experimentally in the ternary system CaO-MgO-SiO2. Based on the thermodynamic extremum principle, parameter domains can be discerned, where reaction rims preferably develop lamellar microstructures or, alternatively, a sequence of monophase layers. For a given set of kinetic parameters, formation of the layered microstructural type is more likely during the initial growth stages, and the lamellar type is preferred at later growth stages.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply
Articles in the same Issue
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply