Home Physical Sciences Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra
Article
Licensed
Unlicensed Requires Authentication

Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra

  • Anthony R. Kampf EMAIL logo , Robert M. Housley , Stuart J. Mills , Joseph Marty and Brent Thorne
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Ottoite, Pb2TeO5, is a new tellurate from Otto Mountain near Baker, California. Most of the mining on Otto Mountain occurred between 1940 and 1970 and is attributed to Otto Fuetterer, for whom the mountain is now named. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins, which intersect granitic rocks. Ottoite is directly associated with acanthite, bromine-rich chlorargyrite, gold, iodargyrite, khinite, wulfenite, and four other new tellurates: housleyite, markcooperite, thorneite, and timroseite. Various other secondary minerals occur in the veins, including two other new secondary tellurium minerals, paratimroseite and telluroperite. Ottoite and most other secondary minerals of the quartz veins are interpreted as having formed from the partial oxidation of primary sulfides and tellurides during or following brecciation of the veins. A later generation of quartz mineralization then recemented the breccias, effectively isolating and protecting the secondary mineralization from further alteration. Ottoite is monoclinic, space group I2/a, with the unit cell: a = 7.5353(6), b = 5.7142(5), c = 10.8981(12) Å, β = 91.330(6)°, V = 469.13(8) Å3, and Z = 4. The mineral occurs as complex spear-shaped crystals in subparallel to divergent intergrowths. It is yellow and transparent to translucent, with a pale yellow streak and adamantine luster. Mohs hardness is estimated at 3. The mineral is brittle, with an irregular fracture and two cleavages in the [100] zone at ~90°-possibly on {010} and {001}. The calculated density is 8.721 g/cm3. Ottoite is biaxial (-), with a large 2V, but indices of refraction are too high to be measured. The optic orientation could only partially be determined: Y ≈ a. No pleochroism was observed. Electron microprobe analyses provided the following averages: PbO 68.88 and TeO3 28.03, total 96.95 wt%; the empirical formula (based on O = 5) is Pb1.96Te6+1.01O5. The strongest powder X-ray diffraction lines are [dobs in Å (hkl) I]: 3.131 (2̅02) 64, 3.055 (013) 90, 3.015 (211) 100, 2.112 (2̅22) 29, 1.810 (006, 2̅15) 21, 1.773 (4̅11, 402) 43, 1.686 (033, 231) 20. The crystal structure (R1 = 0.020) consists of straight chains of trans-corner-sharing Te6+O6 octahedra parallel to a, which are joined by bonds to Pb atoms. The Pb atom exhibit markedly lopsided 11-coordination, typical of Pb2+ with stereoactive 6s2 lone-pair electrons. The powder X-ray diffraction pattern of ottoite is very similar to that reported for girdite. Examination of girdite type material suggests that its description was based upon data obtained from at least two and possibly three different phases, one of which may correspond to ottoite.

Received: 2010-1-27
Accepted: 2010-4-12
Published Online: 2015-4-2
Published in Print: 2010-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Resonant X-ray emission study of the lower-mantle ferropericlase at high pressures
  2. Uranyl phosphate sheet reconstruction during dehydration of metatorbernite [Cu(UO2)2(PO4)2·8H2O]
  3. Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS
  4. Quantum-mechanical evaluation of Np-incorporation into studtite
  5. Electronic structure and local environment of substitutional V3+ in grossular garnet Ca3Al2(SiO4)3: K-edge X-ray absorption spectroscopy and first-principles modeling
  6. Elbrusite-(Zr)—A new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia
  7. What drives the distribution in nature of 3T vs. 2M1 polytype in muscovites and phengites? A general assessment based on new data from metamorphic and igneous granitoid rocks
  8. Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation
  9. The Cr X-ray absorption K-edge structure of poorly crystalline Fe(III)-Cr(III)-oxyhydroxides
  10. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen
  11. Time-resolved in situ studies of apatite formation in aqueous solutions
  12. X-ray Rietveld and 57Fe Mössbauer studies of epidote and piemontite on the join Ca2Al2Fe3+Si3O12(OH)–Ca2Al2Mn3+Si3O12(OH) formed by hydrothermal synthesis
  13. Elastic behavior of zeolite boggsite in silicon oil and aqueous medium: A case of high-pressure-induced over-hydration
  14. Low-temperature infrared spectroscopic study of OH-stretching modes in kaolinite and dickite
  15. Stability field of the high-temperature orthorhombic phase in the enstatite-diopside system
  16. Unique crystal chemistry of two polymorphs of topaz-OH: A multi-nuclear NMR and Raman study
  17. Crystal chemistry of chromian pumpellyite from Osayama, Okayama Prefecture, Japan
  18. Toturite Ca3Sn2Fe2SiO12—A new mineral species of the garnet group
  19. The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate
  20. Crystal chemistry of Cr-spinels from the lherzolite mantle peridotite of Ronda (Spain)
  21. Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra
  22. Lead-tellurium oxysalts from Otto Mountain near Baker, California: II. Housleyite, Pb6CuTe4O18(OH)2, a new mineral with Cu-Te octahedral sheets
  23. The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration
  24. Letter. Crystal structure of a new high-pressure polymorph of topaz-OH
  25. Letter. In situ 238U-230Th disequilibrium dating of pyrochlore at sub-millennial precision
Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3510/html
Scroll to top button